RADII OF LEMNISCATE STARLIKENESS AND CONVEXITY OF THE FUNCTIONS INCLUDING DERIVATIVES OF BESSEL FUNCTIONS

被引:1
作者
Deniz, Erhan [1 ]
Kiziltepe, Adem [1 ]
Cotirla, Luminita-Ioana [2 ]
机构
[1] Kafkas Univ, Fac Sci & Letters, Dept Math, Kars, Turkiye
[2] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 03期
关键词
Normalized Bessel functions of the fist kind; lemniscate convex functions; lemniscate starlike functions; zeros of Bessel function; radius;
D O I
10.7153/jmi-2024-18-53
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our aim is to determine the radii of starlikeness and convexity associated with lemniscate of Bernoulli for three different kinds of normalizations of the function N ( z ) = az 2 J ,, ( z ) + bzJ, , ( z ) + cJ ( z ) , where J nu is the Bessel function of the first kind of order . The key tools in the proof of our main results are the Mittag-Leffler expansion for the function N ( z ) and properties of real zeros of it. Also, we give tables related with special cases of parameters.
引用
收藏
页码:971 / 982
页数:12
相关论文
共 21 条
[1]   STARLIKENESS OF BESSEL FUNCTIONS AND THEIR DERIVATIVES [J].
Baricz, Arpad ;
Caglar, Murat ;
Deniz, Erhan .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (02) :439-449
[2]  
Baricz A, 2016, COMPUT METH FUNCT TH, V16, P93, DOI 10.1007/s40315-015-0123-1
[3]   The radius of convexity of normalized Bessel functions [J].
Baricz, Arpad ;
Szasz, Rbert .
ANALYSIS MATHEMATICA, 2015, 41 (03) :141-151
[4]   THE RADIUS OF STARLIKENESS OF NORMALIZED BESSEL FUNCTIONS OF THE FIRST KIND [J].
Baricz, Arpad ;
Kupan, Pal Aurel ;
Szasz, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) :2019-2025
[5]   The radius of convexity of normalized Bessel functions of the first kind [J].
Baricz, Arpad ;
Szasz, Robert .
ANALYSIS AND APPLICATIONS, 2014, 12 (05) :485-509
[6]  
Brown R. K., 1960, Proc. Amer. Math. Soc., V11, P278, DOI DOI 10.2307/2032969
[7]  
Çaglar M, 2017, RESULTS MATH, V72, P2023, DOI 10.1007/s00025-017-0738-9
[8]   Radii of Starlikeness and Convexity of the Derivatives of Bessel Function [J].
Deniz, E. ;
Kazimoglu, S. ;
Caglar, M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (11) :1686-1711
[9]   The radius of uniform convexity of Bessel functions [J].
Deniz, Erhan ;
Szasz, Robert .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) :572-588
[10]  
Ismail M.E. H., 1995, Methods andApplications ofAnalysis, V2, P1, DOI [10.4310/MAA.1995.v2.n1.a1, DOI 10.4310/MAA.1995.V2.N1.A1]