EQUIVARIANT MIN-MAX HYPERSURFACE IN G-MANIFOLDS WITH POSITIVE RICCI CURVATURE

被引:0
作者
Wang, Tongrui [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国博士后科学基金;
关键词
min-max theory; equivariant minimal surfaces; positive Ricci curvature; multiplicity one; genus; MINIMAL HYPERSURFACES; MORSE INDEX; SURFACES; TOPOLOGY; MULTIPLICITY; CONJECTURE; EXISTENCE; AREA;
D O I
10.2140/pjm.2024.331.149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a connected orientable closed Riemannian manifold M n + 1 with positive Ricci curvature. Suppose G is a compact Lie group acting by isometries on M with 3 <= codim(G <middle dot> p) <= 7 for all p is an element of M. Then we show the equivariant min-max G-hypersurface E corresponding to one- parameter G-sweepouts (of boundary-type) is a multiplicity one minimal G-hypersurface with a G-invariant unit normal and G-equivariant index one. As an application, we are able to establish a genus bound for E, a control on the singular points of E/ G, and an upper bound for the (first) G-width of M provided n + 1 = 3 and the actions of G are orientation preserving.
引用
收藏
页数:40
相关论文
共 45 条
  • [1] ALMGREN F . J, 1962, TOPOLOGY, V1, P257
  • [2] MIN-MAX WIDTHS OF THE REAL PROJECTIVE 3-SPACE
    Batista, Marcio
    Lima, Anderson
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (07) : 5239 - 5258
  • [3] Berndt J., 2016, MONOGRAPHS RES NOTES, Vsecond
  • [4] Bredon G.E., 1972, Introduction to compact transformation groups, V46
  • [5] Chodosh O, 2023, J DIFFER GEOM, V123, P431
  • [6] Chodosh O, 2016, J DIFFER GEOM, V104, P399
  • [7] THE SPACE OF MINIMAL EMBEDDINGS OF A SURFACE INTO A 3-DIMENSIONAL MANIFOLD OF POSITIVE RICCI CURVATURE
    CHOI, HI
    SCHOEN, R
    [J]. INVENTIONES MATHEMATICAE, 1985, 81 (03) : 387 - 394
  • [8] COOPER D., 2000, MSJ MEMOIRS, V5, DOI [10.2969/msjmemoirs/005010000, DOI 10.2969/MSJMEMOIRS/005010000]
  • [9] de Lellis C, 2013, J DIFFER GEOM, V95, P355
  • [10] Comparison between second variation of area and second variation of energy of a minimal surface
    Ejiri, Norio
    Micallef, Mario
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) : 223 - 239