Quantum phase estimation and the Aharonov-Bohm effect

被引:0
作者
Splittorff, K. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, NNF Quantum Comp Programme, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
关键词
Quantum theory;
D O I
10.1103/PhysRevA.110.052426
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the time evolution of a particle on a ring with a long solenoid through and show that due to the Aharonov-Bohm effect this system naturally makes up a physical implementation of the quantum phase estimation algorithm for a U(1) unitary operator. The implementation of the full quantum phase estimation algorithm with a U(N) unitary operator is realized through the non-Abelian Aharonov-Bohm effect. The implementation allows for a more physically intuitive understanding of the algorithm. As an example we use the path integral formulation of the implemented quantum phase estimation algorithm to analyze the classical limit h<overline> - 0.
引用
收藏
页数:8
相关论文
共 50 条
[41]   PHASE-SPACE DYNAMICS AND QUANTUM-MECHANICS [J].
DEAL, WJ .
THEORETICA CHIMICA ACTA, 1990, 77 (04) :225-237
[42]   Optimal superpositions for particle detection via quantum phase [J].
Kilian, Eva ;
Toros, Marko ;
Barker, P. F. ;
Bose, Sougato .
PHYSICAL REVIEW RESEARCH, 2024, 6 (02)
[43]   Single-shot parameter estimation via continuous quantum measurement [J].
Chase, Bradley A. ;
Geremia, J. M. .
PHYSICAL REVIEW A, 2009, 79 (02)
[44]   A Quantum-based Approach to Error in Software Development Effort Estimation [J].
El Koutbi, Salma ;
Idri, Ali .
2017 4TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2017, :248-253
[45]   Quantum phase transition in a pseudo-Hermitian Dicke model [J].
Deguchi, Tetsuo ;
Ghosh, Pijush K. .
PHYSICAL REVIEW E, 2009, 80 (02)
[46]   Quantum theory of a polarization phase gate in an atomic tripod configuration [J].
S. Rebić ;
D. Vitali ;
C. Ottaviani ;
P. Tombesi ;
M. Artoni ;
F. Cataliotti ;
R. Corbalan .
Optics and Spectroscopy, 2005, 99 :264-269
[47]   Quantum theory of the linewidth of a laser with a saturable absorber: phase diffusion [J].
Sokol, M .
OPTICAL ENGINEERING, 1998, 37 (06) :1775-1779
[48]   Quantum kinetic approach to the calculation of the Nernst effect [J].
Michaeli, Karen ;
Finkel'stein, Alexander M. .
PHYSICAL REVIEW B, 2009, 80 (21)
[49]   Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states [J].
Adesso, G. ;
Dell'Anno, F. ;
De Siena, S. ;
Illuminati, F. ;
Souza, L. A. M. .
PHYSICAL REVIEW A, 2009, 79 (04)
[50]   NON-ABELIAN BERRY PHASE IN A QUANTUM-MECHANICAL ENVIRONMENT [J].
ALDINGER, RR ;
BOHM, A ;
LOEWE, M .
FOUNDATIONS OF PHYSICS LETTERS, 1991, 4 (03) :217-234