Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution

被引:8
|
作者
Li, Jiaxin [1 ,2 ]
Zheng, Ke [3 ]
Gao, Lianru [1 ]
Han, Zhu [4 ,5 ,6 ]
Li, Zhi [1 ,2 ]
Chanussot, Jocelyn [7 ,8 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Chinese Acad Sci, Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[7] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[8] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronics packaging; Hyperspectral imaging; Degradation; Image reconstruction; Zero shot learning; Generators; Training; Noise; Tensors; Estimation; Deep image prior (DIP); hyperspectral image (HSI); super-resolution (SR); unsupervised learning; TENSOR FACTORIZATION; FUSION; NETWORK; NET; DECOMPOSITION;
D O I
10.1109/TGRS.2025.3531646
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Depending on a large-scale paired dataset of low-resolution hyperspectral image (LrHSI), high-resolution multispectral image (HrMSI), and corresponding high-resolution hyperspectral image (HrHSI), the supervised paradigm has achieved impressive performance in the hyperspectral image super-resolution (HISR). However, the intrinsic data-intensive manner hinders its further application in real scenarios. Fortunately, deep image prior (DIP) allows us to achieve unsupervised super-resolution (SR) by solely utilizing degraded observations. However, its potential to accurately model complicated hyperspectral priors is still not fully exploited due to the following two factors: 1) existing methods tend to reconstruct the unknown HrHSI directly from a randomly generated noise, leaving it hard to leverage the scene-relevant information for prior learning and 2) the vanilla architecture is handcrafted for the generator network, which shows limitations in feature representation and thus fails to characterize the complicated image properties. To unleash the potential of DIP for the HISR task, we propose an enhanced DIP network, called EDIP-Net, by addressing the aforementioned impediments. Specifically, EDIP-Net is built with a two-stage four-component scheme, with a zero-shot learning (ZSL) stage for input image establishment and a deep image generation (DIG) stage for prior learning. First, we exploit the cross-scale spectral relationship inside the observations and thus design a degradation learning network to generate paired training samples from the observations themselves. As such, two image-coarse estimations are derived in a ZSL manner by learning an interactive spectral learning network. By replacing random noise with two estimations, we design a double U-shape architecture for the generator network to capture their hyperspectral prior, each independently generating one HrHSI candidate. Under this premise, we further propose a degradation-aware decision fusion strategy to integrate the optimal results in a pixel-to-pixel manner. Extensive experiments demonstrate our superiority in achieving high-quality SR performance. The code will be available at https://github.com/JiaxinLiCAS.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Wang, Chen
    Liu, Yun
    Bai, Xiao
    Tang, Wenzhong
    Lei, Peng
    Zhou, Jun
    IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 370 - 380
  • [42] Hyperspectral Image Super-Resolution Meets Deep Learning: A Survey and Perspective
    Wang, Xinya
    Hu, Qian
    Cheng, Yingsong
    Ma, Jiayi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (08) : 1668 - 1691
  • [43] Hyperspectral Image Super-Resolution Inspired by Deep Laplacian Pyramid Network
    He, Zhi
    Liu, Lin
    REMOTE SENSING, 2018, 10 (12):
  • [44] Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation
    Hu, Jing
    Zhao, Minghua
    Li, Yunsong
    REMOTE SENSING, 2019, 11 (10)
  • [45] Hyperspectral Image Super-Resolution Meets Deep Learning: A Survey and Perspective
    Xinya Wang
    Qian Hu
    Yingsong Cheng
    Jiayi Ma
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (08) : 1668 - 1691
  • [46] Hyperspectral Image Super-Resolution Using Deep Feature Matrix Factorization
    Xie, Weiying
    Jia, Xiuping
    Li, Yunsong
    Lei, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (08): : 6055 - 6067
  • [47] Hyperspectral image super-resolution using deep convolutional neural network
    Li, Yunsong
    Hu, Jing
    Zhao, Xi
    Xie, Weiying
    Li, JiaoJiao
    NEUROCOMPUTING, 2017, 266 : 29 - 41
  • [48] Hyperspectral Image Super-Resolution via Self-projected Smooth Prior
    Bu, Yuanyang
    Zhao, Yongqiang
    Chan, Jonathan Cheung-Wai
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 648 - 659
  • [49] Deep Image Prior for Super Resolution of Noisy Image
    Han, Sujy
    Lee, Tae Bok
    Heo, Yong Seok
    ELECTRONICS, 2021, 10 (16)
  • [50] Enhanced Deep Residual Networks for Single Image Super-Resolution
    Lim, Bee
    Son, Sanghyun
    Kim, Heewon
    Nah, Seungjun
    Lee, Kyoung Mu
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1132 - 1140