Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution

被引:8
|
作者
Li, Jiaxin [1 ,2 ]
Zheng, Ke [3 ]
Gao, Lianru [1 ]
Han, Zhu [4 ,5 ,6 ]
Li, Zhi [1 ,2 ]
Chanussot, Jocelyn [7 ,8 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[3] Liaocheng Univ, Coll Geog & Environm, Liaocheng 252059, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[5] Chinese Acad Sci, Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[6] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[7] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[8] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Electronics packaging; Hyperspectral imaging; Degradation; Image reconstruction; Zero shot learning; Generators; Training; Noise; Tensors; Estimation; Deep image prior (DIP); hyperspectral image (HSI); super-resolution (SR); unsupervised learning; TENSOR FACTORIZATION; FUSION; NETWORK; NET; DECOMPOSITION;
D O I
10.1109/TGRS.2025.3531646
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Depending on a large-scale paired dataset of low-resolution hyperspectral image (LrHSI), high-resolution multispectral image (HrMSI), and corresponding high-resolution hyperspectral image (HrHSI), the supervised paradigm has achieved impressive performance in the hyperspectral image super-resolution (HISR). However, the intrinsic data-intensive manner hinders its further application in real scenarios. Fortunately, deep image prior (DIP) allows us to achieve unsupervised super-resolution (SR) by solely utilizing degraded observations. However, its potential to accurately model complicated hyperspectral priors is still not fully exploited due to the following two factors: 1) existing methods tend to reconstruct the unknown HrHSI directly from a randomly generated noise, leaving it hard to leverage the scene-relevant information for prior learning and 2) the vanilla architecture is handcrafted for the generator network, which shows limitations in feature representation and thus fails to characterize the complicated image properties. To unleash the potential of DIP for the HISR task, we propose an enhanced DIP network, called EDIP-Net, by addressing the aforementioned impediments. Specifically, EDIP-Net is built with a two-stage four-component scheme, with a zero-shot learning (ZSL) stage for input image establishment and a deep image generation (DIG) stage for prior learning. First, we exploit the cross-scale spectral relationship inside the observations and thus design a degradation learning network to generate paired training samples from the observations themselves. As such, two image-coarse estimations are derived in a ZSL manner by learning an interactive spectral learning network. By replacing random noise with two estimations, we design a double U-shape architecture for the generator network to capture their hyperspectral prior, each independently generating one HrHSI candidate. Under this premise, we further propose a degradation-aware decision fusion strategy to integrate the optimal results in a pixel-to-pixel manner. Extensive experiments demonstrate our superiority in achieving high-quality SR performance. The code will be available at https://github.com/JiaxinLiCAS.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Single hyperspectral image super-resolution using a progressive upsampling deep prior network
    Wang, Haijun
    Zheng, Wenli
    Wang, Yaowei
    Yang, Tengfei
    Zhang, Kaibing
    Shang, Youlin
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4517 - 4542
  • [22] Deep Networks for Image Super-Resolution with Sparse Prior
    Wang, Zhaowen
    Liu, Ding
    Yang, Jianchao
    Han, Wei
    Huang, Thomas
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 370 - 378
  • [23] Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution
    Qu, Ying
    Qi, Hairong
    Kwan, Chiman
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2511 - 2520
  • [24] Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution
    Gao, Lianru
    Li, Jiaxin
    Zheng, Ke
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [25] Unsupervised deep learning method for single image super-resolution of the thick pinhole imaging system using deep image prior
    Li, Guoguang
    Sheng, Liang
    Duan, Baojun
    Li, Yang
    Hei, Dongwei
    Xing, Qingzi
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (01)
  • [26] DMSN: A Deep Multistream Network for Hyperspectral Image Super-Resolution
    Li, Sheng
    Su, Yuanchao
    Sun, Xu
    Li, Jiaxin
    Li, Boyan
    Gao, Jianjian
    Feng, Xiaohua
    Jiang, Mengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [27] Model-Guided Deep Hyperspectral Image Super-Resolution
    Dong, Weisheng
    Zhou, Chen
    Wu, Fangfang
    Wu, Jinjian
    Shi, Guangming
    Li, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 5754 - 5768
  • [28] Deep Dual Internal Learning for Hyperspectral Image Super-Resolution
    Sun, Yongqing
    Liu, Hong
    Chang, Qiong
    Han, Xianhua
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 263 - 276
  • [29] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [30] Hyperspectral Image Super-Resolution With a Mosaic RGB Image
    Fu, Ying
    Zheng, Yinqiang
    Huang, Hua
    Sato, Imari
    Sato, Yoichi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5539 - 5552