Development of Machine Learning-Aided Rapid CFD Prediction for Optimal Urban Wind Environment Design

被引:0
|
作者
Baitureyeva, Aiymzhan [1 ]
Yang, Tong [2 ]
Wang, Hua Sheng [3 ]
机构
[1] Al Farabi Kazakh Natl Univ, Dept Math & Comp Modeling, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
[2] Middlesex Univ, Fac Sci & Technol, London NW4 4BT, England
[3] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
关键词
Urban design; CFD simulation; Machine learning; Wind environment; Pollution dispersion; Pedestrian comfort; Wind load; THERMAL POWER-PLANTS; SIMULATION; DISPERSION; BUILDINGS; SAFETY; MODEL;
D O I
10.1016/j.scs.2025.106208
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a Machine Learning (ML) model based on Computational Fluid Dynamics (CFD), developed to quickly and accurately predict the impact of buildings on the urban wind environment. While CFD simulations are effective for wind studies, such as analyzing wind loads, pedestrian comfort, and pollution dispersion, they require significant computational resources and time. Recently, Machine Learning has demonstrated strong potential in providing accurate and immediate predictions by learning from datasets. By training on CFDgenerated data, the ML model can quickly produce accurate and physically consistent results, addressing the limitations of CFD methods. The Reynolds-Averaged Navier-Stokes (RANS) turbulence model was chosen for CFD simulations, which were validated against experimental data, with mesh sensitivity analyzed at a wind speed of 3 m/s. A dataset of 300 cases, involving 100 hypothetical buildings and three wind speeds (3, 4, and 5 m/s), was generated to train the ML model. A multi-output regression model was proposed to effectively predict key parameters-wind velocity, turbulence intensity, and COQ mass fraction-in the selected urban domain. The Random Forest algorithm, which best represented the CFD results, was selected for model development. The ML model demonstrated high efficiency on new data, achieving 88-96% accuracy. This work offers a fast and precise prediction tool, valuable for urban design and related applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hybrid framework for rapid evaluation of wind environment around buildings through parametric design, CFD simulation, image processing and machine learning
    He, Yi
    Liu, Xiao-Hui
    Zhang, Hong-Liang
    Zheng, Wei
    Zhao, Fu-Yun
    Schnabel, Marc Aurel
    Mei, Yi
    SUSTAINABLE CITIES AND SOCIETY, 2021, 73
  • [2] Machine Learning-Aided Process Design: Modeling and Prediction of Transformation Temperature for Pearlitic Steel
    Qiao, Ling
    Zhu, Jingchuan
    Wang, Yuan
    STEEL RESEARCH INTERNATIONAL, 2022, 93 (01)
  • [3] Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder
    Sun, Junbo
    Ma, Yongzhi
    Li, Jianxin
    Zhang, Junfei
    Ren, Zhenhua
    Wang, Xiangyu
    JOURNAL OF BUILDING ENGINEERING, 2021, 43
  • [4] Machine learning-aided cost prediction and optimization in construction operations
    Sharma, Virok
    Zaki, Mohd
    Jha, Kumar Neeraj
    Krishnan, N. M. Anoop
    ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2022, 29 (03) : 1241 - 1257
  • [5] Machine learning-aided design of aluminum alloys with high performance
    Chaudry, Umer Masood
    Hamad, Kotiba
    Abuhmed, Tamer
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [6] Machine learning-aided cooling profile prediction in plastic injection molding
    Yigit Konuskan
    Ahmet Hamit Yılmaz
    Burak Tosun
    Ismail Lazoglu
    The International Journal of Advanced Manufacturing Technology, 2024, 130 : 2957 - 2968
  • [7] Machine learning-aided cooling profile prediction in plastic injection molding
    Konuskan, Yigit
    Yilmaz, Ahmet Hamit
    Tosun, Burak
    Lazoglu, Ismail
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 130 (5-6) : 3031 - 3052
  • [8] Machine learning-aided hysteretic response prediction of double skin composite wall under earthquake loads
    Wang, Shiye
    Wang, Wei
    Wu, Yongtao
    Xie, Zhiyang
    Gao, Yuqing
    JOURNAL OF BUILDING ENGINEERING, 2025, 101
  • [9] Machine learning-aided generative design methodology for a Martian regolith habitation shell
    Dede, Gokhan
    ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 3909 - 3935
  • [10] GraphBNC: Machine Learning-Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins
    Pihlajamaeki, Antti
    Matus, Maria Francisca
    Malola, Sami
    Hakkinen, Hannu
    ADVANCED MATERIALS, 2024, 36 (47)