The regularity of semi-hyperbolic patches of solutions to the two-dimensional compressible Euler equations in magnetohydrodynamics

被引:0
作者
Chen, Jianjun [1 ]
Zhang, Yuqi [1 ]
Li, Shuangrong [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
关键词
Compressible Euler equations in; MHD; Semi-hyperbolic patch; Sonic curve; Regularity; Characteristic decomposition; SONIC-SUPERSONIC SOLUTIONS; TRIPLE POINT PARADOX; RAREFACTION WAVE; TRANSONIC SHOCK; RIEMANN PROBLEM; LINES;
D O I
10.1016/j.jmaa.2025.129242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semi-hyperbolic patches appear frequently in solutions of multi-dimensional Riemann problem and transonic flow problems. We have obtained a semi-hyperbolic patch solution for the two-dimensional compressible magnetohydrodynamic equations (Chen and Geng, 2019 [4]). Subsequently, we prove the semi-hyperbolic patch solution is smooth up to the sonic curve and sonic curve is C-1 continuous (Chen and Geng, 2020 [5]). This paper will further consider the regularity of semi-hyperbolic patch problem to the two-dimensional compressible Euler equations in magnetohydrodynamics. By constructing an appropriate variable and using characteristic decomposition and bootstrap method, we show that the semi-hyperbolic patch solution is C-1 ,C- 1/6 up to the sonic curve and sonic curve is also C-1 ,C- 1/6. (c) 2025 Published by Elsevier Inc.
引用
收藏
页数:39
相关论文
共 32 条
  • [1] Cabannes H., 1970, Theoretical Magnetofluid Dynamics, Applied Mathematics and Mechanics
  • [2] Chang T, 1989, PITMAN MONOGRAPHS
  • [3] Chang T., 1995, DISCRETE CONTINUOUS, V1, P555, DOI DOI 10.3934/DCDS.1995.1.555
  • [4] The regularity of semi-hyperbolic patches near sonic curves for the two-dimensional compressible magnetohydrodynamic equations
    Chen, Jianjun
    Lai, Geng
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (11):
  • [5] SEMI-HYPERBOLIC PATCHES OF SOLUTIONS TO THE TWO-DIMENSIONAL COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS
    Chen, Jianjun
    Lai, Geng
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (02) : 943 - 958
  • [6] The Interaction of Rarefaction Waves of the Two-Dimensional Euler Equations
    Chen, Xiao
    Zheng, Yuxi
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) : 231 - 256
  • [7] Cole J.D., 1986, N HOLLAND SERIES APP
  • [8] Courant R., 1948, SUPERSONIC FLOW SHOC
  • [9] TRANSONIC SHOCK FORMATION IN A RAREFACTION RIEMANN PROBLEM FOR THE 2D COMPRESSIBLE EULER EQUATIONS
    Glimm, James
    Ji, Xiaomei
    Li, Jiequan
    Li, Xiaolin
    Zhang, Peng
    Zhang, Tong
    Zheng, Yuxi
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (03) : 720 - 742
  • [10] Hu Y., 2024, Advances in Difference Equations, V30, P177, DOI [10.57262/ade030-0304-177, DOI 10.57262/ADE030-0304-177]