Existence results for variable-order fractional Kirchhoff equations with variable exponents

被引:0
|
作者
Mazan, Hatim [1 ]
Masmodi, Mohamed [1 ]
机构
[1] Ibn Tofail Univ, Fac Sci, Dept Math, Kenitra, Morocco
关键词
Kirchhoff equation; concave-convex term; fractional Sobolev spaces; variable orders and exponents; mountain pass theorem; Ekeland variational principle; MULTIPLICITY; SPACES;
D O I
10.1080/17476933.2024.2416419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study establishes the existence of two nontrivial weak solutions for a specific class of Kirchhoff-type equations. Utilizing the Mountain Pass Theorem and the Ekeland variational principle, alongside insights from fractional Sobolev spaces with variable orders and exponents, we provide a concise demonstration of our result.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The unique identification of variable-order fractional wave equations
    Zheng, Xiangcheng
    Wang, Hong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [22] The unique identification of variable-order fractional wave equations
    Xiangcheng Zheng
    Hong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [23] Some further results of the laplace transform for variable-order fractional difference equations
    Baleanu D.
    Wu G.-C.
    Fractional Calculus and Applied Analysis, 2019, 22 (6) : 1641 - 1654
  • [24] Existence and uniqueness result for a variable-order fractional p(x)-Laplacian problem of Kirchhoff-type
    Mohammed Massar
    São Paulo Journal of Mathematical Sciences, 2025, 19 (1)
  • [25] SOME FURTHER RESULTS OF THE LAPLACE TRANSFORM FOR VARIABLE-ORDER FRACTIONAL DIFFERENCE EQUATIONS
    Baleanu, Dumitru
    Wu, Guo-Cheng
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (06) : 1641 - 1654
  • [26] Existence and Multiplicity of Solutions for a Class of Fractional Kirchhoff Type Problems with Variable Exponents
    Salah, M. Ben Mohamed
    Ghanmi, A.
    Kefi, K.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 253 - 268
  • [27] Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents
    Liang, Sihua
    Bisci, Giovanni Molica
    Zhang, Binlin
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (03): : 556 - 575
  • [28] Inhomogeneous parametric scaling and variable-order fractional diffusion equations
    Roth, Philipp
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2020, 102 (01)
  • [29] A review of numerical solutions of variable-order fractional differential equations
    Sun B.
    Zhang W.-C.
    Li Z.-L.
    Fan K.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2433 - 2442
  • [30] Nonlocal fractional p(.)-Kirchhoff systems with variable-order: Two and three solutions
    Bu, Weichun
    An, Tianqing
    Ye, Guoju
    Guo, Yating
    AIMS MATHEMATICS, 2021, 6 (12): : 13797 - 13823