Mg-Doped Li2FeTiO4 as a High-Performance Cathode Material Enabling Fast and Stable Li-ion Storage

被引:0
作者
Hou, Pengqing [1 ,2 ]
Qu, Yingdong [1 ]
Huang, Rui [2 ]
Tian, Xinru [2 ]
Li, Guanglong [1 ]
Luo, Shaohua [2 ]
机构
[1] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion batteries; Li2FeTiO4; cathode; Mg doping; electrochemical performance; COMPOSITE; LIFETIO4;
D O I
10.3390/inorganics13030076
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
As a multi-electron system material, the excellent capacity and environmentally benign properties of Li2FeTiO4 cathodes make them attractive for lithium-ion batteries. Nevertheless, their electrochemical performance has been hampered by poor conductivity and limited ion transport. In this work, the synthesis of Mg-doped Li2MgxFe1-xTiO4 (LiFT-Mgx, x = 0, 0.01, 0.03, 0.05) cathode materials was successfully achieved. We observed significant gains in interlayer spacing, ionic conductivity, and kinetics. Hence, the sample of the LiFT-Mg0.03 cathode demonstrated charming initial capacity (112.1 mAh g(-1), 0.05 C), stability (85.0%, 30 cycles), and rate capability (96.5 mAh g(-1), 85.9%). This research provided precious insights into lithium storage with exceptional long-term stability and has the potential to drive the development of next-generation energy storage technologies.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Synthesis and electrochemical properties of novel LiFeTiO4 and Li2FeTiO4 polymorphs with the CaFe2O4-type structures [J].
Bruno, Shaun R. ;
Blakely, Colin K. ;
Clapham, Jonathon B. ;
Davis, Joshua D. ;
Bi, Wenli ;
Alp, E. Ercan ;
Poltavets, Viktor V. .
JOURNAL OF POWER SOURCES, 2015, 273 :396-403
[2]   Voltage Control of Multiple Electrochemical Processes during Lithium Ion Migration in NiFe2O4 Ferrite [J].
Cao, Qiang ;
Li, Zhaohui ;
Cai, Li ;
Liu, Senmiao ;
Bu, Zeyuan ;
Yang, Tianxiang ;
Meng, Xianyi ;
Xie, Ronghuan ;
Wang, Xiaolin ;
Li, Qiang ;
Yan, Shishen .
ACS NANO, 2024, 18 (23) :15261-15269
[3]   Raman and FTIR spectroscopy study of LiFeTiO4 and Li2FeTiO4 [J].
Chakrabarti, Shamik ;
Thakur, Awalendra K. ;
Biswas, K. .
IONICS, 2016, 22 (11) :2045-2057
[4]   Density functional theory study of LiFeTiO4 [J].
Chakrabarti, Sharnik ;
Thakur, Awalendra K. ;
Biswas, K. .
JOURNAL OF POWER SOURCES, 2016, 313 :81-90
[5]   Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li+ storage [J].
Chen, Ruiyong ;
Knapp, Michael ;
Yavuz, Murat ;
Ren, Shuhua ;
Witte, Ralf ;
Heinzmann, Ralf ;
Hahn, Horst ;
Ehrenberg, Helmut ;
Indris, Sylvio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :1482-1488
[6]   Review on Defects and Modification Methods of LiFePO4 Cathode Material for Lithium-Ion Batteries [J].
Chen, Shi-Peng ;
Lv, Dan ;
Chen, Jie ;
Zhang, Yu-Hang ;
Shi, Fa-Nian .
ENERGY & FUELS, 2022, 36 (03) :1232-1251
[7]   The Effect of Elemental Doping on Nickel-Rich NCM Cathode Materials of Lithium Ion Batteries [J].
Dang, Rongxin ;
Qu, Yuanduo ;
Ma, Zongkai ;
Yu, Lijie ;
Duan, Lianfeng ;
Lu, Wei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (01) :151-159
[8]   Research on Sodium Storage Performance of Cu and Mg Doped P2 Type Layered Oxide Cathode Materials [J].
Duan, Yu ;
Ma, Zi-han ;
Li, Lili ;
Su, Guanqiao ;
Bao, Shuo ;
Lu, Jin-lin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
[9]   Evolution of LiFePO4 thin films interphase with electrolyte [J].
Dupre, N. ;
Cuisinier, M. ;
Zheng, Y. ;
Fernandez, V. ;
Hamon, J. ;
Hirayama, M. ;
Kanno, R. ;
Guyomard, D. .
JOURNAL OF POWER SOURCES, 2018, 382 :45-55
[10]   Optimize hydrothermal synthesis and electrochemical performance of Li2FeTiO4 composite cathode materials by using orthogonal experimental design method [J].
Hou, Pengqing ;
Yang, Liu ;
Wang, Yafeng ;
Wang, Luoxuan ;
Li, Sinan ;
Lu, Shao-hua .
IONICS, 2020, 26 (04) :1657-1662