Efficient maintenance activities are essential for the safe operation of industrial systems, and rational spare parts management, as an integral support to maintenance activities, is also closely linked to operation planning. In this paper, an integrated optimization model of maintenance, spare parts management, and operation for a single- machine multi-component system is proposed, shortened to MSO-SMPS. The goal of MSO-SMPS is the rational design of maintenance strategy, supported by an excellent collaborative management mechanism for new and used spare parts, achieving simultaneous optimization of the total cost and the completion time. Specifically, an adaptive opportunistic maintenance (OM) strategy and a reuse mechanism of retired components are designed to cope with dynamic changes in the system state and operating environment. Combining new and used spare parts can significantly improve the utilization of spare parts while ensuring that maintenance activities are carried out efficiently. In addition, to better address MSO-SMPS, an improved memetic algorithm (IMA) is proposed, in which an initialization method and four local search operators are designed to improve the solve efficiency. Finally, taking the tunnel boring machine (TBM) cutterhead system as a case, extensive experiments verify the effectiveness of the proposed designs.