Development of a Deep Neural Network (DNN) Model for Feature Selection from Satellite Images

被引:0
|
作者
Mitra, Soma [1 ]
Chowdhury, Debkumar [2 ]
Nandan, Mauparna [3 ]
Parial, Kajori [4 ]
Basu, Saikat [5 ]
机构
[1] Brainware Univ, Computat Sci, 398 Ramkrishnapur Rd,Near Jagadighata Market, Barasat 700125, West Bengal, India
[2] Univ Engn & Management, Comp Sci & Engn, Plot 3 B-5 New Town Rd,New Town,Action,Area 3,Univ, W Bengal 700160, India
[3] Techno India Main, Dept Comp Applicat, Sect 5, Saltlake 700091, West Bengal, India
[4] Maulana Abul Kalam Azad Univ Technol, Dept Geoinformat & Spatial Sci, Nadia 741249, West Bengal, India
[5] Maulana Abul Kalam Azad Univ Technol, Dept Comp Sci & Engn, Haringhata 741249, West Bengal, India
关键词
XGBoost; Random forest; Explainable artificial intelligence (XAI); Deep neural network (DNN); Sundarbans; MANGROVE FORESTS; SEGMENTATION;
D O I
10.1007/s12524-024-02100-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advances in space-based observation, using remotely sensed data, have proved to be an important tool to monitor the globe, including the areas inaccessible to humans. The Sundarbans deltaic region, witnessing the confluence of vast expanses of tropical mangrove forests, tidal rivers, and estuaries, is one such area. Considered as one of the richest biodiversity hotspot zones on earth, home to a large spectrum of biodiversity (flora and fauna), including endangered or threatened species, this forest plays a critical role in land reclamation, coastal habitat protection, and local socioeconomics. However, the forests have been experiencing changes due to climatic forces and anthropogenic activities. Monitoring these changes is crucial for adopting precise management practices. In this work, Landsat 8 images were used to identify the land use and land cover in the Sundarbans. For classification, a new Deep Neural Network (DNN) model is proposed. A comparative analysis of the Overall Accuracy (OA) of the proposed DNN model with two popular Machine Learning models, Random Forest and XGBoost showed 98.9%, 97.0%, and 98.1% OA, respectively. SHapely Additive exPlanations were used for each model to obtain important features. It was observed that Near-Infrared, Short Wave Infrared 1, Blue, and Enhanced Vegetation Index were the most important features. The proposed DNN model outperformed the RF and XGBoost models with these four important features, achieving 98.5% accuracy. In comparison, it was concluded that deep learning techniques are more effective in feature selection from remote sensing images.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] LC-DNN: Local Connection Based Deep Neural Network for Indoor Localization With CSI
    Liu, Wen
    Chen, Hong
    Deng, Zhongliang
    Zheng, Xinyu
    Fu, Xiao
    Cheng, Qianqian
    IEEE ACCESS, 2020, 8 : 108720 - 108730
  • [32] Exploratory Boosted Feature Selection and Neural Network Framework for Depression Classification
    Arun, Vanishri
    Krishna, Murali
    Arunkumar, B., V
    Padma, S. K.
    Shyam, V
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2018, 5 (03): : 61 - 71
  • [33] A Recommendation Model Based on Deep Neural Network
    Zhang, Libo
    Luo, Tiejian
    Zhang, Fei
    Wu, Yanjun
    IEEE ACCESS, 2018, 6 : 9454 - 9463
  • [34] Combining Deep Fully Convolutional Network and Graph Convolutional Neural Network for the Extraction of Buildings from Aerial Images
    Zhang, Wenzhuo
    Yu, Mingyang
    Chen, Xiaoxian
    Zhou, Fangliang
    Ren, Jie
    Xu, Haiqing
    Xu, Shuai
    BUILDINGS, 2022, 12 (12)
  • [35] An Unsupervised Neural Network Feature Selection and 1D Convolution Neural Network Classification for Screening of Parkinsonism
    Mian, Tariq Saeed
    DIAGNOSTICS, 2022, 12 (08)
  • [36] Deep features based convolutional neural network model for text and non-text region segmentation from document images
    Umer, Saiyed
    Mondal, Ranjan
    Pandey, Hari Mohan
    Rout, Ranjeet Kumar
    APPLIED SOFT COMPUTING, 2021, 113
  • [37] Automated Method of Road Extraction from Aerial Images Using a Deep Convolutional Neural Network
    Alshaikhli, Tamara
    Liu, Wen
    Maruyama, Yoshihisa
    APPLIED SCIENCES-BASEL, 2019, 9 (22):
  • [38] An efficient deep neural network model for tuberculosis detection using chest X-ray images
    Balamurugan M.
    Balamurugan R.
    Neural Computing and Applications, 2024, 36 (24) : 14775 - 14796
  • [39] Multiscale Feature Learning by Transformer for Building Extraction From Satellite Images
    Chen, Xin
    Qiu, Chunping
    Guo, Wenyue
    Yu, Anzhu
    Tong, Xiaochong
    Schmitt, Michael
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network
    Basher, Abol
    Kim, Byeong C.
    Lee, Kun Ho
    Jung, Ho Yub
    IEEE ACCESS, 2021, 9 : 29870 - 29882