GENERAL ((k, p ) , ψ)-HILFER FRACTIONAL INTEGRALS

被引:0
作者
Benaissa, Bouharket [1 ]
Budak, Huseyin [2 ]
机构
[1] Univ Tiaret, Bouharket Benaissa Fac Mat Sci, Lab Informat & Math, Tiaret, Algeria
[2] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
关键词
((k; p; psi)-Hilfer fractional; k-gamma function; Riemann-Liouville operator; Hadam- ard operator; Katugampola operator; INEQUALITIES;
D O I
10.18514/MMN.2024.4594
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main motivation of this study is to establish a general version of the RiemannLiouville fractional integrals with two exponential parameters k and p called ((k, p),psi)-Hilfer fractional integrals which is determined over the k-gamma function. We first prove that these operators are well-defined, continuous and have semi-group property. Then, particularly, we present the harmonic, geometric and arithmetic (k, p), psi-Hilfer fractional integrals. Moreover, some special cases relating to general ((k, p),psi)-Riemann-Liouville fraction integrals are given.
引用
收藏
页码:617 / 627
页数:12
相关论文
共 13 条
[1]  
Akkurt A., 2016, NEW TREND MATH SCI, V4, P138, DOI 10.20852/ntmsci.2016217824
[2]   GENERALIZING HARDY TYPE INEQUALITIES VIA k-RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS INVOLVING TWO ORDERS [J].
Benaissa, Bouharket .
HONAM MATHEMATICAL JOURNAL, 2022, 44 (02) :271-280
[3]  
Diaz R., 2004, Divulg. Math, V15, P179
[4]  
Farid G., 2015, INT J MATH ANAL, V9, P471, DOI DOI 10.12988/IJMA.2015.5118
[5]  
Gehlot K.S., 2020, Applications and Applied Mathematics: An International Journal (AAM), V15, P39
[6]  
Kilbas A.A., 2006, NorthHolland Mathematics Studies, DOI DOI 10.1016/S0304-0208(06)80001-0
[7]   On the nonlinear (k, ψ)-Hilfer fractional differential equations [J].
Kucche, Kishor D. ;
Mali, Ashwini D. .
CHAOS SOLITONS & FRACTALS, 2021, 152
[8]  
Mubeen S., 2012, Int. J. Contemp. Math. Sci, V7, P89
[9]  
Romero L.G., 2013, Int. J. Contemp. Math. Sci, V8, P41, DOI [10.12988/ijcms.2013.13004, DOI 10.12988/IJCMS.2013.13004]
[10]  
Sarikaya MZ, 2020, TWMS J APPL ENG MATH, V10, P443