CHOW MOTIVES OF QUASI-ELLIPTIC SURFACES

被引:0
作者
Kawabe, Daiki [1 ]
机构
[1] Tohoku Univ, Aoba, Sendai 9808578, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the transcendental motive of any quasi-elliptic surface is trivial. To prove this, we focus on the uniruledness of quasi-elliptic surfaces.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 2013, ALGEBRAIC SURFACES P
[2]  
Badescu L., 2001, UNIVERSITEX
[3]   K2 OF ARTINIAN Q-ALGEBRAS, WITH APPLICATION TO ALGEBRAIC CYCLES [J].
BLOCH, S .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (05) :405-428
[4]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232
[5]  
Kahn B. J. Murre, 2007, ALGEBRAIC CYCLES MOT, V2, P143
[6]  
Murre Jacob P., 2013, University Lecture Series, V61, P149
[7]  
Pedrini C., 2016, London Math. Soc. Lecture Note Ser., V427, P308
[8]   On the finite dimensionality of a K3 surface [J].
Pedrini, Claudio .
MANUSCRIPTA MATHEMATICA, 2012, 138 (1-2) :59-72
[9]   UNIRATIONALITY OF SUPERSINGULAR SURFACES [J].
SHIODA, T .
MATHEMATISCHE ANNALEN, 1977, 225 (02) :155-159
[10]   EXAMPLE OF UNIRATIONAL SURFACES IN CHARACTERISTIC [J].
SHIODA, T .
MATHEMATISCHE ANNALEN, 1974, 211 (03) :233-236