Energy Storage Performance of Na0.5Bi0.5TiO3-CaHfO3 Lead-Free Ceramics Regulated by Defect Engineering

被引:0
作者
Li, Zhuo [1 ]
Zhang, Jing [1 ]
Wang, Zixuan [1 ]
Wei, Xiaotian [1 ]
Long, Dingjie [1 ]
Zhao, Xin [1 ]
Niu, Yanhui [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710061, Peoples R China
来源
CERAMICS-SWITZERLAND | 2024年 / 7卷 / 03期
关键词
NBT; lead-free ceramics; defect engineering; energy storage density; LOW ELECTRIC-FIELDS; THERMAL-STABILITY; DENSITY;
D O I
10.3390/ceramics7030065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Over the past decades, Na0.5Bi0.5TiO3 (NBT)-based ceramics have received increasing attention in energy storage applications due to their high power density and relatively large maximum polarization. However, their high remnant polarization (P-r) and low breakdown field strength are detrimental for their practical applications. In this paper, a new solid solution (1-x)Na0.5Bi0.5TiO3-xCaHfO(3) (x = 0.04, 0.08, 0.12, 0.16) was constructed by introducing CaHfO3 into NBT, and thus was prepared using a conventional solid-state reaction. With the addition of CaHfO3, the disorder of the structure increased, A-site vacancies formed, and thus oxygen vacancies were suppressed due to the replacement of the Na+ by Ca2+, resulting in the enhanced relaxation behavior and the reduced P-r, the refined grain, and improved breakdown strength. Furthermore, an optimal recoverable energy storage density (W-rec) of 1.2 J/cm(3) was achieved in 0.92Na(0.5)Bi(0.5)TiO(3)-0.08CaHfO(3) ceramics under the breakdown strength of 140 kV/cm, which is mainly attributed to the resultant defect of Na+ vacancy(.)
引用
收藏
页码:1002 / 1013
页数:12
相关论文
共 50 条
  • [41] Enhanced energy storage properties of KNbO3 modified (Bi0.5Na0.5)TiO3-BaTiO3 based lead-free relaxor ferroelectric ceramics
    Yang, Fan
    Li, Qiang
    Hou, Dingwei
    Jia, Yuxin
    Wang, Weijia
    Fan, Huiqing
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (43) : 20965 - 20971
  • [42] Effect of Bi(Li0.5Nb0.5)O3 addition on structural, dielectric, and energy storage properties of Na0.5Bi0.5TiO3-BaZrO3 lead-free ceramics
    Cao, Wenjun
    Li, Tianyu
    Chen, Pengfei
    Wang, Chunchang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (15) : 20342 - 20350
  • [43] Enhanced energy-storage properties of lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics by tuning sintering temperature
    Zhu, Jianye
    Ma, Ziyue
    Su, Qian
    Meng, Xiangjun
    Zhao, Ye
    Li, Yong
    Hao, Xihong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (22) : 26258 - 26267
  • [44] Superior energy storage properties in lead-free Na0.5Bi0.5TiO3-based relaxor ferroelectric ceramics via compositional tailoring and bandgap engineering
    Niu, Xiang
    Liang, Wei
    Jian, Xiaodong
    Tang, Hui
    Wang, Ting
    Gong, Weiping
    Shi, Hongwei
    Li, Feng
    Zhao, Xiaobo
    Yao, Ying-Bang
    Tao, Tao
    Liang, Bo
    Lu, Sheng-Guo
    SCRIPTA MATERIALIA, 2023, 230
  • [45] Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3
    Li, Tianyu
    Chen, Pengfei
    Li, Feng
    Wang, Chunchang
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [46] Compromise boosted high capacitive energy storage in lead-free (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics by phase structure modulation and defect engineering
    Xi, Jiachen
    Lin, Long
    Bai, Wangfeng
    Wu, Shiting
    Zheng, Peng
    Li, Peng
    Zhai, Jiwei
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [47] Influence of NaNbO3 addition to Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics on the energy storage properties
    Wang, L. G.
    Su, X. F.
    Zhu, C. M.
    Yu, G. B.
    Huang, R. T.
    SOLID STATE COMMUNICATIONS, 2023, 371
  • [48] Enhanced energy-storage performance and thermal stability in Bi0.5Na0.5TiO3-based ceramics through defect engineering and composition design
    Yang, F.
    Bao, S.
    Zhai, Y.
    Zhang, Y.
    Su, Z.
    Liu, J.
    Zhai, J.
    Pan, Z.
    MATERIALS TODAY CHEMISTRY, 2021, 22
  • [49] Enhanced energy storage performance of SrTiO3 modified Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 ceramics
    Chandrasekhar, M.
    Choudhary, A.
    Khatua, Dipak Kumar
    Kumar, P.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (05) : 5316 - 5324
  • [50] Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3-0.5SrTiO3 bulk ceramics
    Chen, Peng
    Zhang, Leiyang
    Cai, Jing
    Wang, Ziyang
    Shi, Wengjing
    Jing, Jiayi
    Wei, Fangbin
    Liu, Gang
    Yan, Yan
    Liu, Hongbo
    Jin, Li
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (14) : 13556 - 13566