Plastic-Type Classification for Sorting System Based on Digital Image using Multinomial Logistic Regression with k-Fold Cross Validation

被引:0
作者
Yani, Irsyadi [1 ]
Thamrin, Ismail [1 ]
Puspitasari, Dewi [1 ]
Barlin, Yulia
Resti, Yulia [2 ]
Adanta, Dendy [1 ]
机构
[1] Univ Sriwijaya, Fac Engn, Dept Mech Engn, Indralaya 30662, South Sumatera, Indonesia
[2] Univ Sriwijaya, Fac Math & Nat Sci, Dept Math, Indralaya 30662, South Sumatera, Indonesia
关键词
Plastic type; classification method; k-fold cross-validation; classification; ACCURACY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recycling plastics has become increasingly prevalent in recent years. Recycling reduces plastic waste through the reuse of materials as opposed to their disposal. Additionally, this method aids in the reduction of pollution caused by the emission of greenhouse gases during the production of new plastic from basic materials. The initial phase of the plastic waste recycling procedure involves sorting plastic to various types of material. Accurately identifying the type of plastic is exceptionally beneficial for developing sifting systems in the recycling industry. This study aimed to test how well multinomial logistic regression with k-fold cross-validation can determine the difference among varying types of plastic. This method is a frequently employed statistical learning technique due to its generally satisfactory performance compared with alternative methods. Results showed that multinomial logistic regression performed well in identifying the type of plastic in all performance metrics. The performance average measures of five folds were 86.08% accuracy, 79.11% recall-mu, 79.08% recall-M, 89.56% specificity-mu and 89.59% specificity-M.
引用
收藏
页码:1081 / 1088
页数:8
相关论文
共 40 条
[1]  
Aad G, 2021, EUR PHYS J C, V81, DOI 10.1140/epjc/s10052-021-09009-8
[2]   Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South [J].
Abubakar, Ismaila Rimi ;
Maniruzzaman, Khandoker M. ;
Dano, Umar Lawal ;
AlShihri, Faez S. ;
AlShammari, Maher S. ;
Ahmed, Sayed Mohammed S. ;
Al-Gehlani, Wadee Ahmed Ghanem ;
Alrawaf, Tareq, I .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (19)
[3]   AI-Driven Framework for Recognition of Guava Plant Diseases through Machine Learning from DSLR Camera Sensor Based High Resolution Imagery [J].
Almadhor, Ahmad ;
Rauf, Hafiz Tayyab ;
Lali, Muhammad Ikram Ullah ;
Damasevicius, Robertas ;
Alouffi, Bader ;
Alharbi, Abdullah .
SENSORS, 2021, 21 (11)
[4]  
ARONOFF S, 1982, PHOTOGRAMM ENG REM S, V48, P1299
[5]  
ARONOFF S, 1985, PHOTOGRAMM ENG REM S, V51, P99
[6]   Robust Classification and Detection of Big Medical Data Using Advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression [J].
Awad, Fouad H. ;
Hamad, Murtadha M. ;
Alzubaidi, Laith .
LIFE-BASEL, 2023, 13 (03)
[7]  
Bengio Y, 2004, J MACH LEARN RES, V5, P1089
[8]   Search for supersymmetry in events with b jets and missing transverse momentum at the LHC [J].
Chatrchyan, S. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Tumasyan, A. ;
Adam, W. ;
Bergauer, T. ;
Dragicevic, M. ;
Eroe, J. ;
Fabjan, C. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Hammer, J. ;
Haensel, S. ;
Hoch, M. ;
Hoermann, N. ;
Hrubec, J. ;
Jeitler, M. ;
Kiesenhofer, W. ;
Krammer, M. ;
Liko, D. ;
Mikulec, I. ;
Pernicka, M. ;
Rohringer, H. ;
Schoefbeck, R. ;
Strauss, J. ;
Taurok, A. ;
Teischinger, F. ;
Wagner, P. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Mossolov, V. ;
Shumeiko, N. ;
Gonzalez, J. Suarez ;
Bansal, S. ;
Benucci, L. ;
De Wolf, E. A. ;
Janssen, X. ;
Maes, J. ;
Maes, T. ;
Mucibello, L. ;
Ochesanu, S. ;
Roland, B. ;
Rougny, R. ;
Selvaggi, M. ;
Van Haevermaet, H. ;
Van Mechelen, P. ;
Van Remortel, N. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07)
[9]  
Chow C, 2016, Journal Applied Environmental Education & Communication, V15
[10]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575