Deciphering glioblastoma: Unveiling imaging markers for predicting MGMT promoter methylation status

被引:3
作者
Hexem, Eric [1 ]
Taha, Taha Abd-ElSalam Ashraf [2 ]
Dhemesh, Yaseen [3 ]
Baqar, Mohammad Aneel [1 ]
Nada, Ayman [4 ]
机构
[1] Univ Missouri, Columbia Diagn Radiol Dept, Columbia, MO USA
[2] Fayoum Univ, Fac Med, Al Fayoum, Egypt
[3] Washington Univ St Louis, Sch Med, St. Louis, MO USA
[4] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
关键词
Glioblastoma; MGMT promoter; Epigenetic; Prognosis; APPARENT DIFFUSION-COEFFICIENT; GROWTH-FACTOR RECEPTOR; PROGNOSTIC-SIGNIFICANCE; GLIOMA PATIENTS; CEST MRI; TEMOZOLOMIDE; RADIOTHERAPY; PARAMETERS; SURVIVAL; FEATURES;
D O I
10.1016/j.currproblcancer.2024.101156
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Glioblastoma, the most common primary malignant tumor of the central nervous system in adults, is also among the most lethal. Despite a comprehensive treatment approach which utilizes surgery and postoperative chemoradiation, prognosis typically remains dismal. However certain epigenetic modifications, such as methylation of the MGMT promoter, have been proven to correlate with improved post-treatment outcomes. The 2021 WHO classification emphasizes molecular characteristics, highlighting shared genomic alterations across different grades and positioning MGMT methylation as a key influencer of outcomes. A combined diagnostic approach involving current imaging technology and emerging radiomics and deep learning models may allow for timely and accurate prediction of MGMT methylation status and therefore earlier and more individualized treatment and prognostication. Though these advanced radiomics models are rapidly emerging, additional development, standardization, and implementation may lead to a higher and more individualized level of patient care. This review explores the potential of imaging features in predicting MGMT promoter methylation, a critical determinant of therapeutic response and patient outcomes.
引用
收藏
页数:19
相关论文
共 99 条
[1]   MGMT gene promoter methylation and its correlation with clinicopathological parameters in glioblastomas [J].
Arora, Iteeka ;
Gurav, Mamta ;
Rumde, Rachna ;
Dhanavade, Sandeep ;
Kadam, Vinayak ;
Kurani, Hetakshi ;
Shetty, Omshree ;
Goda, Jayant Sastri ;
Shetty, Prakash ;
Moiyadi, Aliasgar ;
Gupta, Tejpal ;
Jalali, Rakesh ;
Epari, Sridhar .
NEUROLOGY INDIA, 2018, 66 (04) :1106-1114
[2]   Toxicity Profile of Temozolomide in the Treatment of 300 Malignant Glioma Patients in Korea [J].
Bae, So Hyun ;
Park, Min-Jung ;
Lee, Min Mi ;
Kim, Tae Min ;
Lee, Se-Hoon ;
Cho, Sung Yun ;
Kim, Young-Hoon ;
Kim, Yu Jung ;
Park, Chul-Kee ;
Kim, Chae-Yong .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2014, 29 (07) :980-984
[3]   The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials [J].
Binabaj, Maryam Moradi ;
Bahrami, Afsane ;
ShahidSales, Soodabeh ;
Joodi, Marjan ;
Mashhad, Mona Joudi ;
Hassanian, Seyed Mahdi ;
Anvari, Kazem ;
Avan, Amir .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (01) :378-386
[4]   cIMPACT-NOW update 3: recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV" [J].
Brat, Daniel J. ;
Aldape, Kenneth ;
Colman, Howard ;
Holland, Eric C. ;
Louis, David N. ;
Jenkins, Robert B. ;
Kleinschmidt-DeMasters, B. K. ;
Perry, Arie ;
Reifenberger, Guido ;
Stupp, Roger ;
von Deimling, Andreas ;
Weller, Michael .
ACTA NEUROPATHOLOGICA, 2018, 136 (05) :805-810
[5]   Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review) [J].
Cabrini, Giulio ;
Fabbri, Enrica ;
Lo Nigro, Cristiana ;
Dechecchi, Maria Cristina ;
Gambari, Roberto .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2015, 47 (02) :417-428
[6]   Glioblastoma - treatment and obstacles [J].
Cantidio, Farley Soares ;
Gil, Gabriel Oliveira Bernardes ;
Queiroz, Izabella Nobre ;
Regalin, Marcos ;
Pract, Rep .
REPORTS OF PRACTICAL ONCOLOGY AND RADIOTHERAPY, 2022, 27 (04) :744-753
[7]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[8]   Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics [J].
Chen, Sixuan ;
Xu, Yue ;
Ye, Meiping ;
Li, Yang ;
Sun, Yu ;
Liang, Jiawei ;
Lu, Jiaming ;
Wang, Zhengge ;
Zhu, Zhengyang ;
Zhang, Xin ;
Zhang, Bing .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (12)
[9]   Automatic Prediction of MGMT Status in Glioblastoma via Deep Learning-Based MR Image Analysis [J].
Chen, Xin ;
Zeng, Min ;
Tong, Yichen ;
Zhang, Tianjing ;
Fu, Yan ;
Li, Haixia ;
Zhang, Zhongping ;
Cheng, Zixuan ;
Xu, Xiangdong ;
Yang, Ruimeng ;
Liu, Zaiyi ;
Wei, Xinhua ;
Jiang, Xinqing .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020
[10]   Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials [J].
Cheng, Yuan ;
He, Cai ;
Wang, Manni ;
Ma, Xuelei ;
Mo, Fei ;
Yang, Shengyong ;
Han, Junhong ;
Wei, Xiawei .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2019, 4 (1)