Drought stimulus enhanced stress tolerance in winter wheat ( Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity

被引:3
作者
Ru, Chen [1 ]
Hu, Xiaotao [2 ]
Chen, Dianyu [2 ]
Wang, Wene [2 ]
机构
[1] Anhui Agr Univ, Sch Engn, Hefei 230036, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Area, Minist Educ, Yangling 712100, Peoples R China
关键词
Drought stimulus; Rehydration; Physiological characteristics; Stress tolerance; Water productivity; BIOCHEMICAL CHARACTERISTICS; OXIDATIVE STRESS; PLANT-RESPONSES; NORTHWEST CHINA; PHOTOSYNTHESIS; ANTIOXIDANT; MAIZE; LEAF; ARABIDOPSIS; METABOLISM;
D O I
10.1016/j.plaphy.2024.108906
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pnbeing 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Response of Winter Wheat (Triticum aestivum L.) to Selected Biostimulants under Drought Conditions
    Radzikowska-Kujawska, Dominika
    John, Paula
    Piechota, Tomasz
    Nowicki, Marcin
    Kowalczewski, Przemyslaw Lukasz
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [32] Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.)
    Wang, Xiao
    Huang, Mei
    Zhou, Qin
    Cai, Jian
    Dai, Tingbo
    Cao, Weixing
    Jiang, Dong
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 132 : 175 - 182
  • [33] Identification of TaBADH-A1 allele for improving drought resistance and salt tolerance in wheat (Triticum aestivum L.)
    Yu, Ming
    Yu, Yang
    Guo, Sihai
    Zhang, Mingfei
    Li, Nan
    Zhang, Shuangxing
    Zhou, Hongwei
    Wei, Fan
    Song, Tianqi
    Cheng, Jie
    Fan, Qiru
    Shi, Caiyin
    Feng, Wenhan
    Wang, Yukun
    Xiang, Jishan
    Zhang, Xiaoke
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [34] Biochemical and Physiological Responses of Two Wheat (Triticum aestivum L.) Cultivars to Drought Stress Applied at Seedling Stage
    Valifard, M.
    Moradshahi, A.
    Kholdebarin, B.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2012, 14 : 1567 - 1578
  • [35] Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.)
    Khan, Mueen Alam
    Iqbal, Muhammad
    Jameel, Moazzam
    Nazeer, Wajad
    Shakir, Sara
    Aslam, Muhammad Tabish
    Iqbal, Bushra
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (55): : 11340 - 11344
  • [36] Molecular and Physiological Evaluation of Bread Wheat (Triticum aestivum L.) Genotypes for Stay Green under Drought Stress
    Zada, Ahmad
    Ali, Ahmad
    Binjawhar, Dalal Nasser
    Abdel-Hameed, Usama K.
    Shah, Azhar Hussain
    Gill, Shahid Maqsood
    Hussain, Irtiza
    Abbas, Zaigham
    Ullah, Zahid
    Sher, Hassan
    Ali, Iftikhar
    GENES, 2022, 13 (12)
  • [37] Estimation of Leaf Water Use Efficiency Threshold Values for Water Stress in Winter Wheat (Triticum aestivum L.)
    Xinqiang, Qiu
    Yushun, Zhang
    Haixia, Qin
    Min, Wang
    Wang, Yanping
    Haochen, Yang
    Zhenguang, Lu
    JOURNAL OF SENSORS, 2020, 2020
  • [38] Biochemical Indices of Drought Tolerance in Wheat (Triticum aestivum L.) at Early Seedling Stage
    Hameed, Amjad
    Goher, Madiha
    Iqbal, Nayyer
    PHILIPPINE AGRICULTURAL SCIENTIST, 2014, 97 (03) : 236 - 242
  • [39] Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.)
    Jan, Amin Ullah
    Hadi, Fazal
    Midrarullah
    Nawaz, Muhammad Asif
    Rahman, Khaista
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 116 : 139 - 149
  • [40] SILICON FOLIAR APPLICATION IMPROVES WATER STRESS TOLERANCE IN WHEAT (TRITICUM AESTIVUM L.) BY MODULATING GROWTH, YIELD AND PHOTOSYNTHETIC ATTRIBUTES
    Khalid, Annum
    Nawaz, Muhammad
    Iqbal, Naeem
    Ashraf, Muhammad Yasin
    PAKISTAN JOURNAL OF BOTANY, 2022, 54 (05) : 1643 - 1652