Drought stimulus enhanced stress tolerance in winter wheat ( Triticum aestivum L.) by improving physiological characteristics, growth, and water productivity

被引:3
|
作者
Ru, Chen [1 ]
Hu, Xiaotao [2 ]
Chen, Dianyu [2 ]
Wang, Wene [2 ]
机构
[1] Anhui Agr Univ, Sch Engn, Hefei 230036, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Area, Minist Educ, Yangling 712100, Peoples R China
关键词
Drought stimulus; Rehydration; Physiological characteristics; Stress tolerance; Water productivity; BIOCHEMICAL CHARACTERISTICS; OXIDATIVE STRESS; PLANT-RESPONSES; NORTHWEST CHINA; PHOTOSYNTHESIS; ANTIOXIDANT; MAIZE; LEAF; ARABIDOPSIS; METABOLISM;
D O I
10.1016/j.plaphy.2024.108906
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pnbeing 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Characterization of winter wheat (Triticum aestivum L.) germplasm for drought tolerance
    Kanbar, Osama Zuhair
    Chege, Paul
    Lantos, Csaba
    Kiss, Erzsebet
    Pauk, Janos
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2020, 18 (05): : 369 - 381
  • [2] WHEAT (TRITICUM AESTIVUM L.) DROUGHT TOLERANCE INDICES UNDER WATER STRESS CONDITIONS
    Lal, K.
    Jatoi, W. A.
    Memon, S.
    Jatoi, I. A.
    Rind, S. N.
    Rajput, L.
    Khan, N. M.
    Khaskhali, I. A.
    Depar, M. S.
    Lund, M. I.
    Kaleri, M. H.
    Sarwar, M. K. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (01): : 232 - 245
  • [3] Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress
    Liu, Hang
    Zhang, Yun-Hong
    Yin, Heng
    Wang, Wen-Xia
    Zhao, Xiao-Ming
    Du, Yu-Guang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 62 : 33 - 40
  • [4] Winter Wheat (Triticum aestivum L.) Tolerance to Mulch
    Ryan, Matthew R.
    Wayman, Sandra
    Pelzer, Christopher J.
    Peterson, Caitlin A.
    Menalled, Uriel D.
    Rose, Terry J.
    PLANTS-BASEL, 2021, 10 (10):
  • [5] Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.)
    Kambona, Carolyn Mukiri
    Koua, Patrice Ahossi
    Leon, Jens
    Ballvora, Agim
    PHYSIOLOGIA PLANTARUM, 2023, 175 (04)
  • [6] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Ankita Pandey
    Mamrutha Harohalli Masthigowda
    Rakesh Kumar
    Shalini Mishra
    Rinki Khobra
    Girish Chandra Pandey
    Gyanendra Singh
    Gyanendra Pratap Singh
    Plant Physiology Reports, 2023, 28 : 63 - 77
  • [7] ASSESSMENT OF PHYSIOLOGICAL PARAMETERS USEFUL IN SCREENING FOR TOLERANCE TO SOIL DROUGHT IN WINTER WHEAT (TRITICUM AESTIVUM L.) GENOTYPES
    Zivcak, Marek
    Brestic, Marian
    Olsovska, Katarina
    CEREAL RESEARCH COMMUNICATIONS, 2008, 36 : 1943 - 1946
  • [8] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Pandey, Ankita
    Masthigowda, Mamrutha Harohalli
    Kumar, Rakesh
    Mishra, Shalini
    Khobra, Rinki
    Pandey, Girish Chandra
    Singh, Gyanendra
    Singh, Gyanendra Pratap
    PLANT PHYSIOLOGY REPORTS, 2023, 28 (01) : 63 - 77
  • [9] Growth and productivity of winter wheat (Triticum aestivum L.) depending on the sowing parameters
    Poltoretskyi, S.
    Tretiakova, S.
    Mostoviak, I
    Yatsenko, A.
    Tereshchenko, Y.
    Poltoretska, N.
    Berezovskyi, A.
    UKRAINIAN JOURNAL OF ECOLOGY, 2020, 10 (02): : 81 - 87
  • [10] INTERACTIVE EFFECTS OF ABSCISIC ACID (ABA) AND DROUGHT STRESS ON THE PHYSIOLOGICAL RESPONSES OF WINTER WHEAT (TRITICUM AESTIVUM L.)
    Kong, Haiyan
    Zhang, Zhen
    Qin, Juan
    Akram, Nudrat Aisha
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (05) : 1545 - 1551