Computation-Enabled Structure-Based Discovery of Potent Binders for Small-Molecule Aptamers

被引:1
作者
Zhou, Qingtong [1 ,2 ,3 ]
Zhang, Zheng [5 ]
Gao, Ling [6 ]
Li, Guanyi [3 ,8 ]
Zhang, Yue [6 ]
Yang, Weili [9 ]
Zhao, Yaxue [8 ]
Yang, Dehua [3 ,10 ,11 ]
Wang, Ming-Wei [1 ,2 ,3 ,4 ]
Luo, Zhaofeng [5 ]
Xia, Xiaole [6 ,7 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Res Ctr Med Struct Biol, Natl Res Ctr Translat Med Shanghai,Sch Med,State K, Shanghai 200025, Peoples R China
[2] Fudan Univ, Sch Basic Med Sci, Dept Pharmacol, Shanghai 200032, Peoples R China
[3] Res Ctr Deepsea Bioresources, Sanya 572025, Hainan, Peoples R China
[4] Hainan Med Univ, Engn Res Ctr Trop Med Innovat & Transformat, Sch Pharm, Minist Educ, Haikou 570228, Peoples R China
[5] Chinese Acad Sci, Hangzhou Inst Med HIM, Aptamer Select Ctr, Key Lab Zhejiang Prov Aptamers & Theranost, Hangzhou 310022, Zhejiang, Peoples R China
[6] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[7] Tianjin Univ Sci & Technol, Coll Food Sci & Engn, Tianjin 300457, Peoples R China
[8] Shanghai Jiao Tong Univ, Sch Pharmaceut Sci, Shanghai 200240, Peoples R China
[9] Univ Sci & Technol China, Sch Life Sci, Hefei 230026, Anhui, Peoples R China
[10] Chinese Acad Sci, Shanghai Inst Mat Med, Natl Ctr Drug Screening, Shanghai 201203, Peoples R China
[11] Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Chem Biol, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
AFFINITY BINDING; NUCLEIC-ACIDS; DYNAMICS; RECOGNITION; SPECIFICITY; PROTEINS; DOCKING; DESIGN;
D O I
10.1021/acs.jctc.4c01246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aptamers, functional nucleic acids recognized for their high target-binding affinity and specificity, have been extensively employed in biosensors, diagnostics, and therapeutics. Conventional screening methods apply evolutionary pressure to optimize affinity, while counter-selections are used to minimize off-target binding and improve specificity. However, aptamer specificity characterization remains limited to target analogs and experimental controls. A systematic exploration of the chemical space for aptamer-binding chemicals (targets) is crucial for uncovering aptamer versatility and enhancing target specificity in practical applications, a task beyond the scope of experimental approaches. To address this, we employed a high-throughput three-stage structure-based computational framework to identify potent binders for two model aptamers. Our findings revealed that the l-argininamide (L-Arm)-binding aptamer has a 31-fold higher affinity for the retromer chaperone R55 than for L-Arm itself, while guanethidine and ZINC10314005 exhibited comparable affinities to L-Arm. In another case, norfloxacin and difloxacin demonstrated over 10-fold greater affinity for the ochratoxin A (OTA)-binding aptamer OBA3 than OTA, introducing a fresh paradigm in aptamer-target interactions. Furthermore, pocket mutation studies highlighted the potential to tune aptamer specificity, significantly impacting the bindings of L-Arm or norfloxacin. These findings demonstrate the effectiveness of our computational framework in discovering potent aptamer binders, thereby expanding the understanding of aptamer-binding versatility and advancing nucleic acid-targeted drug discovery.
引用
收藏
页码:3216 / 3230
页数:15
相关论文
共 80 条
[61]   Computational tools for aptamer identification and optimization [J].
Sun, Di ;
Sun, Miao ;
Zhang, Jialu ;
Lin, Xin ;
Zhang, Yinkun ;
Lin, Fanghe ;
Zhang, Peng ;
Yang, Chaoyong ;
Song, Jia .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2022, 157
[62]   Aptamers from Cell-Based Selection for Bioanalytical Applications [J].
Tan, Weihong ;
Donovan, Michael J. ;
Jiang, Jianhui .
CHEMICAL REVIEWS, 2013, 113 (04) :2842-2862
[63]   Defining RNA Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA [J].
Velagapudi, Sai Pradeep ;
Luo, Yiling ;
Tran, Tuan ;
Haniff, Hafeez S. ;
Nakai, Yoshio ;
Fallahi, Mohammad ;
Martinez, Gustavo J. ;
Childs-Disney, Jessica L. ;
Disney, Matthew D. .
ACS CENTRAL SCIENCE, 2017, 3 (03) :205-216
[64]   Robust Covalent Aptamer Strategy Enables Sensitive Detection and Enhanced Inhibition of SARS-CoV-2 Proteins [J].
Wang, Dan ;
Zhang, Jing ;
Huang, Zhiyong ;
Yang, Yuhang ;
Fu, Ting ;
Yang, Yu ;
Lyu, Yifan ;
Jiang, Jianhui ;
Qiu, Liping ;
Cao, Zehui ;
Zhang, Xiaobing ;
You, Qimin ;
Lin, Yuankui ;
Zhao, Zilong ;
Tan, Weihong .
ACS CENTRAL SCIENCE, 2023, 9 (01) :72-83
[65]   Interrogating RNA-Small Molecule Interactions with Structure Probing and Artificial Intelligence-Augmented Molecular Simulations [J].
Wang, Yihang ;
Parmar, Shaifaly ;
Schneekloth, John S. ;
Tiwary, Pratyush .
ACS CENTRAL SCIENCE, 2022, 8 (06) :741-748
[66]   Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity [J].
Weinberg, Zasha ;
Nelson, James W. ;
Lunse, Christina E. ;
Sherlock, Madeline E. ;
Breaker, Ronald R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (11) :E2077-E2085
[67]   Computing Clinically Relevant Binding Free Energies of HIV-1 Protease Inhibitors [J].
Wright, David W. ;
Hall, Benjamin A. ;
Kenway, Owain A. ;
Jha, Shantenu ;
Coveney, Peter V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (03) :1228-1241
[68]   Machine learning modeling of RNA structures: methods, challenges and future perspectives [J].
Wu, Kevin E. ;
Zou, James Y. ;
Chang, Howard .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
[69]   Structure-guided post-SELEX optimization of an ochratoxin A aptamer [J].
Xu, Guohua ;
Zhao, Jiajing ;
Liu, Na ;
Yang, Minghui ;
Zhao, Qiang ;
Li, Conggang ;
Liu, Maili .
NUCLEIC ACIDS RESEARCH, 2019, 47 (11) :5963-5972
[70]   Detection and beyond: challenges and advances in aptamer-based biosensors [J].
Yoo, Hyebin ;
Jo, Hyesung ;
Oh, Seung Soo .
MATERIALS ADVANCES, 2020, 1 (08) :2663-2687