DISSOCIATION IN CIRCULANT GRAPHS AND INTEGER DISTANCE GRAPHS

被引:0
作者
Huang, Jia [1 ]
机构
[1] Univ Nebraska Kearney, Dept Math & Stat, Kearney, NE 68849 USA
关键词
dissociation number; dissociation ratio; circulant graph; integer distance graph; COMPLEXITY; PACKING; RATIO; Z(N);
D O I
10.7151/dmgt.2563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dissociation set of a graph G is a set of vertices which induces a subgraph of G with maximum degree at most 1, or equivalently, a set of vertices whose complement in G is a 3-path vertex cover (intersecting every 3-path of G ). The maximum cardinality of a dissociation set of G is called the dissociation number of G . We study the dissociation number of a circulant graph (a Cayley graph of the group Z n ) and generalize this concept to the dissociation ratio of an integer distance graph (a Cayley graph of the group Z ).
引用
收藏
页数:16
相关论文
共 19 条
  • [1] NP-hard graph problems and boundary classes of graphs
    Alekseev, V. E.
    Boliac, R.
    Korobitsyn, D. V.
    Lozin, V. V.
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 389 (1-2) : 219 - 236
  • [2] On the vertex k-path cover
    Bresar, Bostjan
    Jakovac, Marko
    Katrenic, Jan
    Semanisin, Gabriel
    Taranenko, Andrej
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1943 - 1949
  • [3] Minimum k-path vertex cover
    Bresar, Bostjan
    Kardos, Frantisek
    Katrenic, Jan
    Semanisin, Gabriel
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1189 - 1195
  • [4] The k-path vertex cover: General bounds and chordal graphs
    Bujtas, Csilla
    Jakovac, Marko
    Tuza, Zsolt
    [J]. NETWORKS, 2022, 80 (01) : 63 - 76
  • [5] Independent packings in structured graphs
    Cameron, K
    Hell, P
    [J]. MATHEMATICAL PROGRAMMING, 2006, 105 (2-3) : 201 - 213
  • [6] On the independence ratio of distance graphs
    Carraher, James M.
    Galvin, David
    Hartke, Stephen G.
    Radcliffe, A. J.
    Stolee, Derrick
    [J]. DISCRETE MATHEMATICS, 2016, 339 (12) : 3058 - 3072
  • [7] SOLUTION TO A CONJECTURE OF SCHMIDT AND TULLER ON ONE-DIMENSIONAL PACKINGS AND COVERINGS
    Frankl, N. O. R. A.
    Kupavskii, A. N. D. R. E. Y.
    Sagdeev, A. R. S. E. N., II
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2353 - 2362
  • [8] Domination ratio of a family of integer distance digraphs with arbitrary degree
    Huang, Jia
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 317 : 1 - 9
  • [9] Domination ratio of integer distance digraphs
    Huang, Jia
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 262 : 104 - 115
  • [10] From rainbow to the lonely runner: A survey on coloring parameters of distance graphs
    Liu, Daphne Der-Fen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (04): : 851 - 871