Exploring the protective effect and molecular mechanism of betulin in Alzheimer's disease based on network pharmacology, molecular docking and experimental validation

被引:0
|
作者
Wang, Na [1 ]
Cui, Jiali [2 ]
Sun, Ziteng [1 ]
Chen, Fan [3 ,4 ]
He, Xiaping [1 ]
机构
[1] Dali Univ, Sch Basic Med Sci, Lab Brain & Cognit Sci, 22 Wan Hua Rd, Dali 671003, Yunnan, Peoples R China
[2] Yunnan Inst Mat Med, Yunnan Prov Co Key Lab TCM & Ethn Drug New Drug Cr, Kunming 650111, Yunnan, Peoples R China
[3] Jiangnan Univ, Mental Hlth Ctr, Dept Psychiat, 180 Lihu Ave, Wuxi 214151, Jiangsu, Peoples R China
[4] Jiangnan Univ, Wuxi Sch Med, Lab Heart Dis Mech & Translat Res, Wuxi 214122, Jiangsu, Peoples R China
关键词
Alzheimer's disease; betulin; network pharmacology; PI3K/AKT signaling pathway; formaldehyde; APOPTOSIS; PATHWAY; FORMALDEHYDE; INHIBITION; PROGRESS; MODELS; PLANTS; ROLES;
D O I
10.3892/mmr.2024.13356
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs learning and memory, with high rates of mortality. Birch bark has been traditionally used in the treatment of various skin ailments. Betulin (BT) is a key compound of birch bark that exhibits diverse pharmacological benefits and therapeutic potential in AD. However, the therapeutic effects and molecular mechanisms of BT in AD remain unclear. The present study aimed to predict the potential therapeutic targets of BT in the treatment of AD, and to determine the specific underlying molecular mechanisms through network pharmacology analysis and experimental validation. PharmMapper was used to predict the target genes of BT, and four disease databases were searched to screen for AD targets. The intersection targets were identified using the jveen website. Drug-disease target protein-protein interaction networks and hub genes were obtained and visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape. The Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and AutoDock was used for molecular docking analysis of BT and hub genes. Subsequently, the network-predicted mechanisms of BT in AD were verified in vitro. A total of 495 BT and 1,386 AD targets were identified, and 120 were identified as potential targets of BT in the treatment of AD. The results of the molecular docking analysis revealed a strong binding affinity between BT and the hub genes. In addition, enrichment analyses of GO and KEGG pathways indicated that the neuroprotective effects of BT mainly involved the 'PI3K-Akt signaling pathway'. The results of in vitro experiments demonstrated that pretreatment with BT for 2 h may ameliorate formaldehyde (FA)-induced cytotoxicity and morphological changes in HT22 cells, and decrease FA-induced Tau hyperphosphorylation and reactive oxygen species levels. Furthermore, the PI3K/AKT signaling pathway was activated and the expression levels of downstream proteins, namely GSK3 beta, Bcl-2 and Bax, were modified following pre-treatment with BT. Overall, the results of network pharmacology and in vitro analyses revealed that BT may reduce FA-induced AD-like pathology by modulating the PI3K/AKT signaling pathway, highlighting it as a potential multi-target drug for the treatment of AD.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Network Pharmacology and Molecular Docking Perspectives into Lignans for Alzheimer's Disease Treatment
    Sirin, Seda
    Dolanbay, Serap Nigdelioglu
    KSU TARIM VE DOGA DERGISI-KSU JOURNAL OF AGRICULTURE AND NATURE, 2024, 27 (01): : 35 - 58
  • [22] Yuan-Zhi decoction in the treatment of Alzheimer's disease: An integrated approach based on chemical profiling, network pharmacology, molecular docking and experimental evaluation
    Wu, Qiong
    Li, Xiang
    Jiang, Xiao-Wen
    Yao, Dong
    Zhou, Li-Jun
    Xu, Zi-Hua
    Wang, Nan
    Zhao, Qing-Chun
    Zhang, Zhou
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [23] Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification
    He, Shasha
    He, Xuhua
    Pan, Shujuan
    Jiang, Wenwen
    MOLECULES, 2023, 28 (18):
  • [24] Molecular mechanism of the effect of BixiezelanYin on knee osteoarthritis based on network pharmacology and molecular docking
    Huang, Renkun
    Lu, Jiehua
    Yang, Xueyi
    Sheng, Guanyun
    Qin, Fangyi
    Yang, Xiongwu
    MEDICINE, 2025, 104 (06) : e41459
  • [25] Exploring the mechanism of aidi injection for lung cancer by network pharmacology approach and molecular docking validation
    Zhuang, Zhenjie
    Lin, Tong
    Luo, Lixia
    Zhou, Weixin
    Wen, Junmao
    Huang, Haifu
    Liu, Zhanhua
    Lin, Lizhu
    BIOSCIENCE REPORTS, 2021, 41 (02)
  • [26] Exploring the Effect and Mechanism of DaYuan Yin Against Acute Lung Injury by Network Pharmacology, Molecular Docking, and Experimental Validation
    Zhang, Lei
    Zhu, Wei
    Zhang, Cong
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2024, 18 : 5541 - 5561
  • [27] Exploring the mechanism and experimental validation of Fuzi Lizhong Tang in treating gastric cancer based on network pharmacology and molecular docking
    Zhang, F. -Y.
    Guo, S. -C.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (19) : 9192 - 9204
  • [28] Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation
    Shengnan Chen
    Bo Li
    Lei Chen
    Hongli Jiang
    Journal of Translational Medicine, 21
  • [29] Exploring the effect and mechanism of Aloin A against cancer cachexia-induced muscle atrophy via network pharmacology, molecular docking, molecular dynamics and experimental validation
    Dawuti, Awaguli
    Ma, Lisha
    An, Xueyan
    Guan, Jiawei
    Zhou, Changdong
    He, Linyun
    Xu, Yue
    Han, Bo
    Abulizi, Abudumijiti
    AGING-US, 2023, 15 (24): : 15557 - 15577
  • [30] Molecular mechanism of quercetin in treating RA-ILD based on network pharmacology, molecular docking, and experimental validation
    Wang, Jing
    Wang, Zhichao
    Zhao, Yang
    Bai, Le
    Wei, Yun
    Huang, Tongxing
    Xu, Yong
    Zhou, Xianmei
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (05) : 3077 - 3092