Simplified Graph Contrastive Learning for Recommendation with Direct Optimization of Alignment and Uniformity

被引:0
|
作者
Tian, Renjie [1 ]
Jing, Mingli [1 ]
Jiao, Long [2 ]
Wang, Fei [1 ]
机构
[1] Xian Shiyou Univ, Sch Elect Engn, 18 Dianzi 2nd Rd, Xian 710065, Shaanxi, Peoples R China
[2] Xian Shiyou Univ, Coll Chem & Chem Engn, 18 Dianzi 2nd Rd, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; Contrastive learning; Data augmentation; Representation Learning; Alignment and Uniformity;
D O I
10.1007/s13369-024-09804-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graph contrastive learning has been widely used in recommender systems to extract meaningful representations by analyzing the similarities and differences between data samples. However, existing methods often suffer from complex architectures, inefficient representation learning, and lack of attention to the essential properties required for effective embedding. To address these issues, we propose the simplified graph contrastive learning for recommendation with direct optimization of alignment and uniformity (SGCL) method. Our method first constructs a single contrast learning view and directly optimizes two key properties: alignment (to ensure that positive user-item pairs are tightly localized in the embedding space) and uniformity (to maintain a uniform distribution of embeddings across the vector space). Second, controlled noise is also introduced into the embedding space to further refine the distribution of the learned representations. This improves the quality of user and project embeddings while reducing computational complexity. Finally, the main recommendation task is jointly trained with the contrastive learning task. Extensive experiments on the Yelp2018, Alibaba-iFashion, and Amazon-book datasets show that SGCL outperforms the baseline model, LightGCN, with 30% and 36% improvement in Recall@20 and NDCG@20, respectively. These results are especially significant in sparse data scenarios, where the model exhibits excellent performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Intelligible graph contrastive learning with attention-aware for recommendation
    Mo, Xian
    Zhao, Zihang
    He, Xiaoru
    Qi, Hang
    Liu, Hao
    NEUROCOMPUTING, 2025, 614
  • [42] Multi-behavior-based graph contrastive learning recommendation
    Bin, Chenzhong
    Li, Weiliang
    Wu, Fangjian
    Chang, Liang
    Wen, Yimin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (06) : 3477 - 3496
  • [43] Cascading graph contrastive learning for multi-behavior recommendation
    Yang, Jiangquan
    Li, Xiangxia
    Li, Bin
    Tian, Lianfang
    Xu, Bo
    Chen, Yanhong
    NEUROCOMPUTING, 2024, 610
  • [44] Hierarchical neighbor-enhanced graph contrastive learning for recommendation
    Wei, Hongjie
    Wang, Junli
    Ji, Yu
    Guang, Mingjian
    Yan, Chungang
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [45] Hierarchical Graph Contrastive Learning for Review-Enhanced Recommendation
    Shui, Changsheng
    Li, Xiang
    Qi, Jianpeng
    Jiang, Guiyuan
    Yu, Yanwei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK, PT VI, ECML PKDD 2024, 2024, 14946 : 423 - 440
  • [46] Graph attention contrastive learning with missing modality for multimodal recommendation
    Zhao, Wenqian
    Yang, Kai
    Ding, Peijin
    Na, Ce
    Li, Wen
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [47] Contrastive Learning Based Graph Convolution Network for Social Recommendation
    Zhuang, Jiabo
    Meng, Shunmei
    Zhang, Jing
    Sheng, Victor S.
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (08)
  • [48] Hierarchical Alignment With Polar Contrastive Learning for Next-Basket Recommendation
    Su, Ting-Ting
    Wang, Chang-Dong
    Xi, Wu-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 199 - 210
  • [49] TagRec: Temporal-Aware Graph Contrastive Learning With Theoretical Augmentation for Sequential Recommendation
    Peng, Tianhao
    Yuan, Haitao
    Zhang, Yongqi
    Li, Yuchen
    Dai, Peihong
    Wang, Qunbo
    Wang, Senzhang
    Wu, Wenjun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 3015 - 3029
  • [50] uCTRL: Unbiased Contrastive Representation Learning via Alignment and Uniformity for Collaborative Filtering
    Lee, Jae-woong
    Park, Seongmin
    Yoon, Mincheol
    Lee, Jongwuk
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2456 - 2460