Incomplete multi-view clustering based on information fusion with self-supervised learning

被引:0
作者
Cai, Yilong [1 ]
Shu, Qianyu [2 ]
Zhou, Zhengchun [1 ]
Meng, Hua [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Incomplete multi-view clustering; Sample-missing problem; Information fusion; Contrastive learning;
D O I
10.1016/j.inffus.2024.102849
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering algorithms aim to analyze data structures and properties, grouping the data based on their underlying structural characteristics. Traditional multi-view clustering algorithms focus on combining data shared by multiple views to perform cluster analysis, and such algorithms typically limit the completeness of the data in each view. In real-world applications, it is common that the samples within each view are missing, which reduces clustering performance. In this paper, we propose a novel incomplete multi-view clustering algorithm that addresses the sample-missing problem by leveraging self-supervised information fusion to integrate both global and local information. Data pair construction, global information extraction, and missing information completion are three core modules for the proposed algorithm: (1) constructing multi- view positive and negative pairs through contrastive learning to identify the differences between data samples in a self-supervised manner; (2) forming adjacency matrices to capture the manifold structure of the entire sample data and introducing spectral loss to tighten the representation of similar clusters in the feature layer; and (3) employing the kernel regression method to estimate the missing information in a nonlinear manner by calculating the cross-view metric relationship between the existing data and the missing data, thereby improving data integrity. The proposed network framework combines local information complementation and global information extraction. The experimental results show that our proposed method outperforms existing state-of-the-art methods, achieving an average performance gain of 4.75% accuracy across multiple datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A novel consensus learning approach to incomplete multi-view clustering
    Liu, Jianlun
    Teng, Shaohua
    Fei, Lunke
    Zhang, Wei
    Fang, Xiaozhao
    Zhang, Zhuxiu
    Wu, Naiqi
    PATTERN RECOGNITION, 2021, 115
  • [22] Adaptive graph learning for enhanced incomplete multi-view clustering
    Rui Hong
    Xiao-ping Chen
    Yan Zhou
    Hui Liu
    Tiancai Wan
    Taili Bai
    Pattern Analysis and Applications, 2025, 28 (2)
  • [23] Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion
    Ji, Xiaoyang
    Zhou, Yuchen
    Yang, Haofu
    Xu, Shiyue
    Li, Jiahao
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 254 - 259
  • [24] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [25] Incomplete multi-view clustering via attention-based contrast learning
    Yanhao Zhang
    Changming Zhu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 4101 - 4117
  • [26] Adaptive Weighted Graph Fusion Incomplete Multi-View Subspace Clustering
    Zhang, Pei
    Wang, Siwei
    Hu, Jingtao
    Cheng, Zhen
    Guo, Xifeng
    Zhu, En
    Cai, Zhiping
    SENSORS, 2020, 20 (20) : 1 - 18
  • [27] Deep incomplete multi-view clustering via attention-based direct contrastive learning
    Zhang, Kaiwu
    Du, Shiqiang
    Wang, Yaoying
    Deng, Tao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [28] Multi-view clustering with semantic fusion and contrastive learning
    Yu, Hui
    Bian, Hui-Xiang
    Chong, Zi-Ling
    Liu, Zun
    Shi, Jian-Yu
    NEUROCOMPUTING, 2024, 603
  • [29] Self-Supervised pre-training model based on Multi-view for MOOC Recommendation
    Tian, Runyu
    Cai, Juanjuan
    Li, Chuanzhen
    Wang, Jingling
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [30] Semi-Supervised and Self-Supervised Classification with Multi-View Graph Neural Networks
    Yuan, Jinliang
    Yu, Hualei
    Cao, Meng
    Xu, Ming
    Xie, Junyuan
    Wang, Chongjun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2466 - 2476