A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS
被引:0
|
作者:
He, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
He, Kai
[1
]
Chen, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Chen, Junjie
[1
]
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Zhang, Li
[1
,2
]
Ran, Maohua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Ran, Maohua
[1
]
机构:
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
Stabilizer-free;
weak Galerkin finite element method;
Darcy-Stokes equations;
weak gradient operator;
optimal order error estimates;
PRESSURE-ROBUST;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we propose a new method for the Darcy-Stokes equations based on the stabilizer-free weak Galerkin finite element method. In the proposed method, we remove the stabilizer term by increasing the degree of polynomial approximation space of the weak gradient operator. Compared with the classical weak Galerkin finite element method, it will not increase the size of global stiffness matrix. We show that the new algorithm not only has a simpler formula, but also reduces the computational complexity. Optimal order error estimates are established for the corresponding numerical approximation in various norms. Finally, we numerically illustrate the accuracy and convergence of this method.
机构:
Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
Cao, Pei
Chen, Jinru
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Minist Educ, Nanjing 210023, Peoples R China
Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R ChinaNanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Peoples R China
机构:
Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqUniv Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
AL-Taweel, Ahmed
Hussain, Saqib
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USAUniv Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USAUniv Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
Wang, Xiaoshen
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION,
2021,
11
(04):
: 1963
-
1981
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Li, Rui
Gao, Yali
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Gao, Yali
Li, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Univ Sci & Technol, Sch Arts & Sci, Dept Math, Xian 710021, Shaanxi, Peoples R China
Baoji Univ Arts & Sci, Dept Math, Baoji 721013, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Li, Jian
Chen, Zhangxin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, CanadaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China