A STABILIZER-FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE DARCY-STOKES EQUATIONS

被引:0
作者
He, Kai [1 ]
Chen, Junjie [1 ]
Zhang, Li [1 ,2 ]
Ran, Maohua [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
基金
中国国家自然科学基金;
关键词
Stabilizer-free; weak Galerkin finite element method; Darcy-Stokes equations; weak gradient operator; optimal order error estimates; PRESSURE-ROBUST;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new method for the Darcy-Stokes equations based on the stabilizer-free weak Galerkin finite element method. In the proposed method, we remove the stabilizer term by increasing the degree of polynomial approximation space of the weak gradient operator. Compared with the classical weak Galerkin finite element method, it will not increase the size of global stiffness matrix. We show that the new algorithm not only has a simpler formula, but also reduces the computational complexity. Optimal order error estimates are established for the corresponding numerical approximation in various norms. Finally, we numerically illustrate the accuracy and convergence of this method.
引用
收藏
页码:459 / 475
页数:17
相关论文
共 40 条
[1]   A stabilizer free weak Galerkin finite element method for parabolic equation [J].
Al-Taweel, Ahmed ;
Hussain, Saqib ;
Wang, Xiaoshen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
[2]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[3]  
Boffi D., 2013, Springer Series in Computational Mechanics, V44, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
[4]  
Brezzi F., 2008, Mixed finite elements, compatibility conditions, and applications
[5]   ROBUST GLOBALLY DIVERGENCE-FREE WEAK GALERKIN METHODS FOR STOKES EQUATIONS [J].
Chen, Gang ;
Feng, Minfu ;
Xie, Xiaoping .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (05) :549-572
[6]   A robust WG finite element method for convection-diffusion-reaction equations [J].
Chen, Gang ;
Feng, Minfu ;
Xie, Xiaoping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 :107-125
[7]   CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED FINITE ELEMENT METHODS [J].
Chen, Long ;
Holst, Michael ;
Xu, Jinchao .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :35-53
[8]   Stabilized Mixed Finite Element Methods for Linear Elasticity on Simplicial Grids in Rn [J].
Chen, Long ;
Hu, Jun ;
Huang, Xuehai .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (01) :17-31
[9]   Weak Galerkin method for the coupled Darcy-Stokes flow [J].
Chen, Wenbin ;
Wang, Fang ;
Wang, Yanqiu .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :897-921
[10]  
Cockburn B, 2005, MATH COMPUT, V74, P1067, DOI 10.1090/S0025-5718-04-01718-1