Stabilization and FLQ-optimal control of conformable positive linear systems

被引:1
作者
Ennouari, Toufik [1 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Dept Math, El Jadida 24000, Morocco
来源
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL | 2024年 / 17卷 / 04期
关键词
positive system; conformable derivative; stabilization; fractional linear quadratic (FLQ) problem; MODELS;
D O I
10.32513/asetmj/1932200824046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The positive stabilization problem for a class of fractional conformable linear systems in which the state takes non-negative values when the initial conditions are non-negative is addressed in this paper. Furthermore, the finite-horizon linear quadratic optimal control problem with non-negative state constraints (FLQ+) is studied for continuous-time positive linear fractional systems. Necessary and sufficient conditions are proven so that the FLQ-optimal control given by the standard fractional linear quadratic problem is also optimal for FLQ+. Then, sufficient conditions are established for the positivity of the FLQ-optimal closed-loop system.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 30 条
  • [1] Fractional logistic models in the frame of fractional operators generated by conformable derivatives
    Abdeljawad, Thabet
    Al-Mdallal, Qasem M.
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 (94-101) : 94 - 101
  • [2] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [3] Locally positive stabilization of infinite-dimensional linear systems by state feedback
    Abouzaid, B.
    Achhab, M. E.
    Dehaye, J. N.
    Hastir, A.
    Winkin, J. J.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2022, 63 : 1 - 13
  • [4] THE HILLE YOSIDA THEOREM FOR CONFORMABLE FRACTIONAL SEMI-GROUPS OF OPERATORS
    Al-Sharif, Sh
    Al Horani, M.
    Khalil, R.
    [J]. MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2021, 33 (01) : 18 - 26
  • [5] Fundamental fractional exponential matrix: New computational formulae and electrical applications
    Al-Zhour, Zeyad
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 129
  • [6] New properties of conformable derivative
    Atangana, Abdon
    Baleanu, Dumitru
    Alsaedi, Ahmed
    [J]. OPEN MATHEMATICS, 2015, 13 : 889 - 898
  • [7] LQ-optimal control of positive linear systems
    Beauthier, Charlotte
    Winkin, Joseph J.
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2010, 31 (06) : 547 - 566
  • [8] Tutorial on the positive realization problem
    Benvenuti, L
    Farina, L
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 651 - 664
  • [9] Stability of conformable fractional time-varying linear systems
    Binid, Abdellaziz
    Ennouari, Toufik
    Abouzaid, Bouchra
    [J]. JOURNAL OF CONTROL AND DECISION, 2024, 11 (04) : 678 - 688
  • [10] Dynamic cobweb models with conformable fractional derivatives
    Bohner, Martin
    Hatipoglu, Veysel Fuat
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 : 157 - 167