Flexural behavior of UHPC encased steel composite beams: Experiment and numerical simulation

被引:1
|
作者
Chen, Guixiang [1 ]
Gan, Tian [1 ]
Gao, Xiaolong [1 ]
机构
[1] Henan Univ Technol, Coll Civil Engn, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Ultra-high performance concrete (UHPC); Flexural behavior; Steel reinforced UHPC beam; Digital Image Correlation (DIC); Finite element analysis; HIGH-PERFORMANCE CONCRETE; DIGITAL IMAGE CORRELATION; FATIGUE BEHAVIOR; RC BEAMS; STRENGTH; EVOLUTION;
D O I
10.1016/j.jcsr.2024.109233
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper aimed to enhance the understanding of the flexural behavior and cracking mechanism of UHPC encased steel (UES) composite beams with different section types, as well to evaluate the flexural performances compared with the traditional steel reinforced concrete beams. Three beam specimens with different concrete types (ordinary concrete and UHPC) and different beam section types (solid and hollow sections) were designed and tested. The damage mode and cracking mechanism of UES composite beams were revealed by Digital Image Correlation (DIC) technique. Then, three finite element (FE) models were developed and the validated FE models were used to parametrically investigate the flexural behavior of UES beams with different design parameters such as longitudinal tensile reinforcement ratio, inverted T-beam web and flange thickness, and UHPC compressive strength. The results reveal that the growth of concrete strength can effectively improve the flexural capacity of the UES composite beams, which was raised by 24.6 % for the UHPC composite beam compared to the C50 concrete composite beam. The removal of the upper flange plate and section hollowing had less impact on the bending performance of the UES beams. The growth of tensile reinforcement ratio and the growth of web and flange thickness of inverted T-beam can raise the flexural capacity of UES beam, while the improvement of UHPC compressive strength has small effect. This paper provides a systematic and comprehensive understanding of the flexural performance and cracking mechanism of UES beams with hollow section, which will strongly promote the cost-effective application of UHPC.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Flexural behavior of high-strength steel bar reinforced UHPC beams with considering restrained shrinkage
    Guo, Yi-Qing
    Wang, Jun-Yan
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 409
  • [22] Experimental study on flexural behavior of UHPC-NC composite beams
    Liu, C.
    Sun, Q. X.
    BRIDGE MAINTENANCE, SAFETY, MANAGEMENT, LIFE-CYCLE SUSTAINABILITY AND INNOVATIONS, 2021, : 3905 - 3911
  • [23] Flexural behavior of BFRP bar-hybrid steel fiber reinforced UHPC beams
    Zhang, Ao
    Fan, Xiao-chun
    Gao, Xu
    Ge, Teng
    STRUCTURES, 2024, 66
  • [24] Numerical simulation of concrete encased steel composite columns
    Ellobody, Ehab
    Young, Ben
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2011, 67 (02) : 211 - 222
  • [25] Flexural Behavior of Partially Encased Composite Beams with a Large Tensile Reinforcement Ratio
    Jiang, Yuchen
    Hu, Xiamin
    Zheng, Hao
    Shuai, Haoyang
    BUILDINGS, 2024, 14 (06)
  • [26] Numerical and theoretical studies on shear behavior of steel-UHPC composite beams with waffle slab
    Zhu, Jinsong
    Ding, Jingnan
    Wang, Yongguang
    JOURNAL OF BUILDING ENGINEERING, 2022, 47
  • [27] Flexural behavior of a novel demountable steel-UHPC composite slab
    Gu J.
    Wang J.
    Lu W.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (01): : 84 - 92
  • [28] Flexural behavior and design of high-strength I-shaped steel-UHPC composite beams
    Lai, Zhichao
    Yao, Pengyu
    Yang, Xiaoqiang
    Li, Shihui
    Zhao, Qiu
    ADVANCES IN STRUCTURAL ENGINEERING, 2025,
  • [29] Behavior and design of steel-UHPC composite beams subjected to negative moment
    Zhao, Qiu
    Xiao, Feng
    Nie, Yu
    Yang, Yao-Feng
    Fang, Xiang-Ming
    STRUCTURES, 2023, 57
  • [30] TRANSVERSE FLEXURAL BEHAVIOR OF STEEL-UHPC COMPOSITE DECK UNDER HOGGING MOMENT
    Fang Z.
    Wu X.-N.
    Tan X.-Y.
    Liao Y.
    Yang Y.
    Tang S.-F.
    Gongcheng Lixue/Engineering Mechanics, 2024, 41 (02): : 112 - 124