共 42 条
- [1] Lampis A., Lomurno E., Matteucci M., Bridging the Gap: Enhancing the Utility of Synthetic Data via Post-Processing Techniques, (2023)
- [2] Shokri R., Stronati M., Song C., Shmatikov V., Membership inference attacks against machine learning models, (2017)
- [3] Elasri M., Elharrouss O., Al-Maadeed S., Tairi H., Image generation: A review, Neural Process. Lett., 54, 5, pp. 4609-4646, (2022)
- [4] Sakirin T., Kusuma S., A survey of generative artificial intelligence techniques, Babylon. J. Artif. Intell., 2023, pp. 10-14, (2023)
- [5] Kang M., Zhu J.-Y., Zhang R., Park J., Shechtman E., Paris S., Park T., Scaling up gans for text-to-image synthesis, (2023)
- [6] Xu M., Yoon S., Fuentes A., Park D.S., A comprehensive survey of image augmentation techniques for deep learning, Pattern Recognit., 137, (2023)
- [7] Frid-Adar M., Diamant I., Klang E., Amitai M., Goldberger J., Greenspan H., GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification, Neurocomputing, (2018)
- [8] Sedigh P., Sadeghian R., Masouleh M.T., Generating synthetic medical images by using GAN to improve CNN performance in skin cancer classification, (2019)
- [9] Islam J., Zhang Y., GAN-based synthetic brain PET image generation, Brain Inform., (2020)
- [10] Lomurno E., Archetti A., Cazzella L., Samele S., Di Perna L., Matteucci M., SGDE: Secure generative data exchange for cross-silo federated learning, (2022)