Natural-Based Microparticles as Sole Stabilizers of High Internal Phase Pickering Emulsions

被引:0
作者
Cafiero, Marie [1 ,2 ,3 ]
Maillard, Marie-Noelle [1 ,2 ]
Maniguet, Sabrina [3 ]
de la Poterie, Valerie [3 ]
Huc-Mathis, Delphine [1 ,2 ]
机构
[1] Paris Saclay Univ, AgroParisTech, UMR SayFood, F-91123 Palaiseau, France
[2] INRAE, F-91120 Palaiseau, France
[3] LVMH Rech, F-45800 St Jean De Braye, France
来源
ACS OMEGA | 2025年 / 10卷 / 05期
关键词
FOOD; SURFACTANTS; PARTICLES;
D O I
10.1021/acsomega.4c08147
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing a water-reduced emulsion is a technical approach to creating more sustainable cosmetic products and reducing the strain on global water resources. This study explores the structuration of highly concentrated O/W emulsions solely stabilized by particles, also known as "high internal phase Pickering emulsions" (HIPPEs). It focuses especially on particles from natural origins with a micrometric scale instead of the highly modified nanometric ones commonly used (which may raise health issues). Highly concentrated O/W emulsions were formulated with different lipid phases (regarding the chemical nature and polarity) of up to 80%. A comprehensive array of particle natural sources (plant, mineral, etc.), micrometric sizes (from 3 to 45 mu m), and geometries were screened. Parameters such as droplet size distribution, microstructure, relative stability (backscatter level changes), and pH were systematically monitored over 2 weeks. An experimental design approach was carried out on three particles to determine their stability domains in various formulation combinations, dissecting complex parameter interactions that pilot emulsion characteristics. Micrometric particles demonstrated excellent efficacy in structuring HIPPEs. A wide spectrum of systems can be engineered, exhibiting a wide range of microstructures (droplets ranging from micrometers to several millimeters), stabilities, and intrinsic properties (with pH values extending from approximately 6 to 10). Emulsions displaying resistance to coalescence in W/O systems were also successfully formulated by using hydrophobic natural particles. Waterless emulsions (less than 20% (w/w) water) stabilized exclusively with naturally derived microparticles represent promising architectures for designing future clean-label cosmetic prototypes. By meticulously selecting particle parameters, including their chemical composition, size, or origin, we can tailor the architecture of HIPPEs to obtain the targeted characteristics and functionalities. Beyond particle constituents, other ingredients influence the structural arrangement such as the lipid phase chemistry.
引用
收藏
页码:4534 / 4547
页数:14
相关论文
共 50 条
  • [41] High internal phase pickering emulsions stabilized by zein/whey protein nanofibril complexes: Preparation and lycopene loading
    Xia, Shasha
    Wang, Qiming
    Rao, Zhenan
    Lei, Xiaojuan
    Zhao, Jichun
    Lei, Lin
    Ming, Jian
    [J]. FOOD CHEMISTRY, 2024, 452
  • [42] Highly Bioadaptive Scaffolds with Tuned Porous Structure Templated by Xylan Nanocrystal High Internal Phase Pickering Emulsions
    Li, Qianlong
    Jin, Xuchen
    Coyne, Ben
    Xiang, Zhouyang
    [J]. LANGMUIR, 2024, 40 (42) : 22202 - 22210
  • [43] Fabrication and characterization of Pickering high internal phase emulsions stabilized by debranched starch-capric acid complex nanoparticles
    Jia, Yuhan
    Kong, Lingyan
    Zhang, Bin
    Fu, Xiong
    Huang, Qiang
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 207 : 791 - 800
  • [44] pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles
    Guan, Xin
    Ngai, To
    [J]. LANGMUIR, 2021, 37 (08) : 2843 - 2854
  • [45] Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions
    Ma, Chunfeng
    Bi, Xiaobo
    Ngai, To
    Zhang, Guangzhao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) : 5353 - 5360
  • [46] Development of high internal phase Pickering emulsions stabilized by egg yolk and carboxymethylcellulose complexes to improve β-carotene bioaccessibility for the elderly
    Hou, Jingjie
    Tan, Guixin
    Hua, Shihui
    Zhang, Huajiang
    Wang, Jing
    Xia, Ning
    Zhou, Sijie
    An, Dong
    [J]. FOOD RESEARCH INTERNATIONAL, 2024, 177
  • [47] Fabrication of high internal phase Pickering emulsions with calcium-crosslinked whey protein nanoparticles for β-carotene stabilization and delivery
    Yi, Jiang
    Gao, Luyu
    Zhong, Guitian
    Fan, Yuting
    [J]. FOOD & FUNCTION, 2020, 11 (01) : 768 - 778
  • [48] Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing
    Wu, Chao
    Liu, Zhe
    Zhi, Lanyi
    Jiao, Bo
    Tian, Yanjie
    Liu, Hongzhi
    Hu, Hui
    Ma, Xiaojie
    Pignitter, Marc
    Wang, Qiang
    Shi, Aimin
    [J]. NANOMATERIALS, 2022, 12 (17)
  • [49] Edible high internal phase Pickering emulsion with double-emulsion morphology
    Jiang, Hang
    Zhang, Tong
    Smits, Joeri
    Huang, Xiaonan
    Maas, Michael
    Yin, Shouwei
    Ngai, To
    [J]. FOOD HYDROCOLLOIDS, 2021, 111
  • [50] Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues
    Du, Liyang
    Zhou, Shanshan
    Huang, Yilei
    Meng, Zong
    [J]. FOOD CHEMISTRY, 2025, 465