ANALYTICAL APPROXIMATIONS OF LOTKA-VOLTERRA INTEGRALS

被引:0
|
作者
Lundstrom, Niklas L. P. [1 ]
Soderbacka, Gunnar J. [2 ]
机构
[1] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
[2] Abo Akad Univ, Turku 20500, Finland
来源
ANZIAM JOURNAL | 2025年 / 67卷
关键词
Rosenzweig-MacArthur; predator-prey; size of limit cycle; Lyapunov; Lambert W function; PROJECTILE MOTION; LIMIT-CYCLE;
D O I
10.1017/S1446181125000033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive simple analytical bounds for solutions of $x - \ln x = y -\ln y$ , and use them for estimating trajectories following Lotka-Volterra-type integrals. We show how our results give estimates for the Lambert W function as well as for trajectories of general predator-prey systems, including, for example, Rosenzweig-MacArthur equations.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The Lotka-Volterra canonical format
    Rocha, TA
    Gléria, IM
    Figueiredo, A
    Brenig, L
    ECOLOGICAL MODELLING, 2005, 183 (01) : 95 - 106
  • [32] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [33] Dynamics of a Lotka-Volterra map
    Balibrea, Francisco
    Guirao, Juan Luis Garcia
    Lampart, Marek
    Llibre, Jaume
    FUNDAMENTA MATHEMATICAE, 2006, 191 (03) : 265 - 279
  • [34] Derivations of Lotka-Volterra algebras
    Gutierrez Fernandez, Juan C.
    Garcia, Claudia I.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 292 - 304
  • [35] ON A NEUTRAL LOTKA-VOLTERRA SYSTEM
    GOPALSAMY, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (01) : 11 - 21
  • [36] On the Nonautonomous Lotka-Volterra System
    De Luca, R.
    Rionero, S.
    NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 49 - 55
  • [37] GENERALIZATION OF LOTKA-VOLTERRA EQUATION
    NAZARENKO, VG
    BIOFIZIKA, 1976, 21 (01): : 172 - 177
  • [38] On generalized Lotka-Volterra lattices
    Dimakis, A
    Müller-Hoissen, F
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) : 1187 - 1193
  • [39] Extinction in the Lotka-Volterra model
    Parker, Matthew
    Kamenev, Alex
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [40] Stochastic Lotka-Volterra system
    Dimentberg, MF
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 307 - 317