Local time-stepping for the shallow water equations using CFL optimized forward-backward Runge-Kutta schemes

被引:0
作者
Lilly, Jeremy R. [1 ,2 ]
Capodaglio, Giacomo [2 ]
Engwirda, Darren [3 ]
Higdon, Robert L. [1 ]
Petersen, Mark R. [2 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Shallow water; Time-stepping; CFL condition; Storm surge; MPAS-Ocean; TRiSK; MODELS; OCEANS;
D O I
10.1016/j.jcp.2024.113511
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Courant-Friedrichs-Lewy (CFL) condition is a well known, necessary condition for the stability of explicit time-stepping schemes that effectively places a limit on the size of the largest admittable time-step for a given problem. We formulate and present a new local time-stepping (LTS) scheme optimized, in the CFL sense, for the shallow water equations (SWEs). This new scheme, called FB-LTS, is based on the CFL optimized forward-backward Runge-Kutta schemes from Lilly et al. [16]. We show that FB-LTS maintains exact conservation of mass and absolute vorticity when applied to the TRiSK spatial discretization [21], and provide numerical experiments showing that it retains the temporal order of the scheme on which it is based (second order). We implement FB-LTS, along with a certain operator splitting, in MPAS-Ocean to test computational performance. This scheme, SplitFB-LTS, is up to 10 times faster than the classical four-stage, fourth-order Runge-Kutta method (RK4), and 2.3 times faster than an existing strong stability preserving Runge-Kutta based LTS scheme with the same operator splitting (SplitLTS3). Despite this significant increase in efficiency, the solutions produced by SplitFB-LTS are qualitatively equivalent to those produced by both RK4 and SplitLTS3.
引用
收藏
页数:24
相关论文
共 26 条
  • [1] SOLUTION OF TIDAL EQUATIONS FOR M2 AND S2 TIDES IN WORLD OCEANS FROM A KNOWLEDGE OF TIDAL POTENTIAL ALONE
    ACCAD, Y
    PEKERIS, CL
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 290 (1368): : 235 - 266
  • [2] Arakawa A., 1977, METHODS COMPUT PHYS, VVolume 17, P173, DOI DOI 10.1016/B978-0-12-460817-7.50009-4
  • [3] Arbic B., 2018, New Front. Operat. Oceanogr., DOI [10.17125/gov2018.ch13, DOI 10.17125/GOV2018.CH13]
  • [4] Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean
    Barton, Kristin N.
    Pal, Nairita
    Brus, Steven R.
    Petersen, Mark R.
    Arbic, Brian K.
    Engwirda, Darren
    Roberts, Andrew F.
    Westerink, Joannes J.
    Wirasaet, Damrongsak
    Schindelegger, Michael
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (11)
  • [5] Local time stepping for the shallow water equations in MPAS
    Capodaglio, Giacomo
    Petersen, Mark
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [6] Modeling of additive manufacturing processes for metals: Challenges and opportunities
    Francois, M. M.
    Sun, A.
    King, W. E.
    Henson, Nj.
    Tourret, D.
    Bronkhorst, C. A.
    Carlson, N. N.
    Newman, C. K.
    Haut, T.
    Bakosi, J.
    Gibbs, J. W.
    Livescu, V.
    Vander Wiel, S. A.
    Clarke, Aj.
    Schraad, M. W.
    Blacker, T.
    Lim, H.
    Rodgers, T.
    Owen, S.
    Abdeljawad, F.
    Madison, J.
    Anderson, A. T.
    Fattebert, J-L.
    Ferencz, R. M.
    Hodge, N. E.
    Khairallah, S. A.
    Walton, O.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (04) : 198 - 206
  • [7] GARRATT JR, 1977, MON WEATHER REV, V105, P915, DOI 10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO
  • [8] 2
  • [9] The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation
    Golaz, Jean-Christophe
    Van Roekel, Luke P.
    Zheng, Xue
    Roberts, Andrew F.
    Wolfe, Jonathan D.
    Lin, Wuyin
    Bradley, Andrew M.
    Tang, Qi
    Maltrud, Mathew E.
    Forsyth, Ryan M.
    Zhang, Chengzhu
    Zhou, Tian
    Zhang, Kai
    Zender, Charles S.
    Wu, Mingxuan
    Wang, Hailong
    Turner, Adrian K.
    Singh, Balwinder
    Richter, Jadwiga H.
    Qin, Yi
    Petersen, Mark R.
    Mametjanov, Azamat
    Ma, Po-Lun
    Larson, Vincent E.
    Krishna, Jayesh
    Keen, Noel D.
    Jeffery, Nicole
    Hunke, Elizabeth C.
    Hannah, Walter M.
    Guba, Oksana
    Griffin, Brian M.
    Feng, Yan
    Engwirda, Darren
    Di Vittorio, Alan V.
    Dang, Cheng
    Conlon, LeAnn M.
    Chen, Chih-Chieh-Jack
    Brunke, Michael A.
    Bisht, Gautam
    Benedict, James J.
    Asay-Davis, Xylar S.
    Zhang, Yuying
    Zhang, Meng
    Zeng, Xubin
    Xie, Shaocheng
    Wolfram, Phillip J.
    Vo, Tom
    Veneziani, Milena
    Tesfa, Teklu K.
    Sreepathi, Sarat
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (12)
  • [10] A two-level time-stepping method for layered ocean circulation models: further development and testing
    Higdon, RL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) : 463 - 504