Biomolecular condensates in immune cell fate

被引:1
|
作者
Kodali, Srikanth [1 ,2 ,3 ,4 ]
Sands, Caroline M. [1 ,2 ,3 ,4 ]
Guo, Lei [5 ,6 ]
Huang, Yun [5 ,6 ]
Di Stefano, Bruno [1 ,2 ,3 ,4 ]
机构
[1] Baylor Coll Med, Stem Cells & Regenerat Med Ctr, Houston, TX 77030 USA
[2] Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[4] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[5] Texas A&M Univ, Inst Biosci & Technol, Houston, TX USA
[6] Texas A&M Univ, Sch Med, Dept Translat Med Sci, Houston, TX USA
关键词
INTRINSICALLY DISORDERED REGIONS; HEMATOPOIETIC STEM-CELLS; MESSENGER-RNA DECAY; PHASE-SEPARATION; P-BODIES; STRESS GRANULES; IN-VIVO; TRANSCRIPTION; LEUKEMIA; DOMAIN;
D O I
10.1038/s41577-025-01130-z
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Dual function of biomolecular condensates
    Wood, Heather
    NATURE REVIEWS NEUROLOGY, 2023, 19 (2) : 67 - 67
  • [32] Molecular structure in biomolecular condensates
    Peran, Ivan
    Mittag, Tanja
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 60 : 17 - 26
  • [33] Introduction: Biophysics of biomolecular condensates
    Zweckstetter, Markus
    PROTEIN SCIENCE, 2021, 30 (07) : 1274 - 1276
  • [34] Bioengineering with synthetic biomolecular condensates
    Nature Reviews Bioengineering, 2023, 1 (7): : 457 - 457
  • [35] Peptide diffusion in biomolecular condensates
    Workman, Riley J.
    Huang, Caleb J.
    Lynch, Gillian C.
    Pettitt, B. Montgomery
    BIOPHYSICAL JOURNAL, 2024, 123 (12) : 1668 - 1675
  • [36] Transcription regulation by biomolecular condensates
    Pei, Gaofeng
    Lyons, Heankel
    Li, Pilong
    Sabari, Benjamin R.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2025, 26 (03) : 213 - 236
  • [37] Nucleation landscape of biomolecular condensates
    Shimobayashi, Shunsuke F.
    Ronceray, Pierre
    Sanders, David W.
    Haataja, Mikko P.
    Brangwynne, Clifford P.
    NATURE, 2021, 599 (7885) : 503 - +
  • [38] Biomolecular condensates and disease pathogenesis
    Ke Ruan
    Ge Bai
    Yanshan Fang
    Dan Li
    Tingting Li
    Xingguo Liu
    Boxun Lu
    Qing Lu
    Zhou Songyang
    Shuguo Sun
    Zheng Wang
    Xin Zhang
    Wen Zhou
    Hong Zhang
    Science China(Life Sciences), 2024, 67 (09) : 1792 - 1832
  • [39] The exchange dynamics of biomolecular condensates
    Zhang, Yaojun
    Pyo, Andrew G. T.
    Kliegman, Ross
    Jiang, Yoyo
    Brangwynne, Clifford P.
    Stone, Howard A.
    Wingreen, Ned S.
    ELIFE, 2024, 12
  • [40] Mesoscopic organization of biomolecular condensates
    Adame-Arana, Omar
    Bajpai, Gaurav
    Safran, Samuel A.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 147 - 147