Biomolecular condensates in immune cell fate

被引:1
作者
Kodali, Srikanth [1 ,2 ,3 ,4 ]
Sands, Caroline M. [1 ,2 ,3 ,4 ]
Guo, Lei [5 ,6 ]
Huang, Yun [5 ,6 ]
Di Stefano, Bruno [1 ,2 ,3 ,4 ]
机构
[1] Baylor Coll Med, Stem Cells & Regenerat Med Ctr, Houston, TX 77030 USA
[2] Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[4] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[5] Texas A&M Univ, Inst Biosci & Technol, Houston, TX USA
[6] Texas A&M Univ, Sch Med, Dept Translat Med Sci, Houston, TX USA
关键词
INTRINSICALLY DISORDERED REGIONS; HEMATOPOIETIC STEM-CELLS; MESSENGER-RNA DECAY; PHASE-SEPARATION; P-BODIES; STRESS GRANULES; IN-VIVO; TRANSCRIPTION; LEUKEMIA; DOMAIN;
D O I
10.1038/s41577-025-01130-z
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 50 条
  • [21] Membrane curvature sensing by model biomolecular condensates
    Anila, Midhun Mohan
    Ghosh, Rikhia
    Rozycki, Bartosz
    SOFT MATTER, 2023, 19 (20) : 3723 - 3732
  • [22] Engineering synthetic biomolecular condensates
    Dai, Yifan
    You, Lingchong
    Chilkoti, Ashutosh
    NATURE REVIEWS BIOENGINEERING, 2023, 1 (07): : 466 - 480
  • [23] Protein conformation and biomolecular condensates
    Vazquez, Diego S.
    Toledo, Pamela L.
    Gianotti, Alejo R.
    Ermacora, Mario R.
    CURRENT RESEARCH IN STRUCTURAL BIOLOGY, 2022, 4 : 285 - 307
  • [24] Biomolecular condensates in epithelial junctions
    Sun, Daxiao
    LuValle-Burke, Isabel
    Pombo-Garcia, Karina
    Honigmann, Alf
    CURRENT OPINION IN CELL BIOLOGY, 2022, 77
  • [25] Biomolecular condensates in neurodegeneration and cancer
    Spannl, Stephanie
    Tereshchenko, Maria
    Mastromarco, Giovanni J.
    Ihn, Sean J.
    Lee, Hyun O.
    TRAFFIC, 2019, 20 (12) : 890 - 911
  • [26] Molecular structure in biomolecular condensates
    Peran, Ivan
    Mittag, Tanja
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 60 : 17 - 26
  • [27] Transcription regulation by biomolecular condensates
    Pei, Gaofeng
    Lyons, Heankel
    Li, Pilong
    Sabari, Benjamin R.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2025, 26 (03) : 213 - 236
  • [28] Biomolecular condensates in autophagy regulation
    Fujioka, Yuko
    Noda, Nobuo N.
    CURRENT OPINION IN CELL BIOLOGY, 2021, 69 : 23 - 29
  • [29] Peptide diffusion in biomolecular condensates
    Workman, Riley J.
    Huang, Caleb J.
    Lynch, Gillian C.
    Pettitt, B. Montgomery
    BIOPHYSICAL JOURNAL, 2024, 123 (12) : 1668 - 1675
  • [30] Biomolecular condensates in cancer biology
    Suzuki, Hiroshi, I
    Onimaru, Koh
    CANCER SCIENCE, 2022, 113 (02) : 382 - 391