Stability estimate and the Tikhonov regularization method for the Kuramoto-Sivashinsky equation backward in time

被引:0
|
作者
Duc, Nguyen Van [1 ]
Thang, Nguyen Van [2 ]
Muoi, Pham Quy [3 ]
机构
[1] Vinh Univ, Dept Math, Vinh City, Vietnam
[2] Quan Hanh Secondary Sch, Quan Hanh, Nghe An, Vietnam
[3] Univ Danang, Univ Sci & Educ, Dept Math, 459 Ton Duc Thang, Danang, Vietnam
关键词
Kuramoto-Sivashinsky equation backward in time; stability estimate; Tikhonov regularization method; LIQUID-FILM; NETWORKS; FLOW; INSTABILITY; BEHAVIOR; SYSTEMS; WAVES;
D O I
10.1515/jiip-2024-0064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Kuramoto-Sivashinsky (KS) equation backward in time. First, we prove a stability estimate of H & ouml;lder type. Then the ill-posed problem is regularized by the Tikhonov regularization method, and an error estimate of H & ouml;lder type is obtained. Finally, we apply a physics-informed neural network method to solve the problem numerically.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [32] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    FOIAS, C
    NICOLAENKO, B
    SELL, GR
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 285 - 288
  • [33] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [34] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [35] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13
  • [36] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [37] Computational study of the Kuramoto-Sivashinsky equation
    Smyrlis, YS
    Papageorgiou, DT
    ADVANCES IN MULTI-FLUID FLOWS, 1996, : 426 - 432
  • [38] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [39] A note on the Kuramoto-Sivashinsky equation with discontinuity
    D'Ambrosio, Lorenzo
    Gallo, Marco
    Pugliese, Alessandro
    MATHEMATICS IN ENGINEERING, 2021, 3 (05):
  • [40] Scaling properties of the Kuramoto-Sivashinsky equation
    Li, J
    Sander, LM
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 507 - 514