Automatic Segmentation of Vestibular Schwannoma From MRI Using Two Cascaded Deep Learning Networks

被引:0
|
作者
Haeussler, Sophia Marie [1 ]
Betz, Christian S. [1 ]
Della Seta, Marta [2 ,3 ]
Eggert, Dennis [1 ]
Schlaefer, Alexander [4 ]
Bhattacharya, Debayan [1 ,4 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Otorhinolaryngol, Martinistr 52, D-20246 Hamburg, Germany
[2] Berlin Humboldt Univ Berlin, Inst Radiol, Berlin Inst Hlth, Charite Universitatsmedizin Berlin, Berlin, Germany
[3] Berlin Inst Hlth, Berlin, Germany
[4] Hamburg Univ Technol, Inst Med Technol & Intelligent Syst, Hamburg, Germany
来源
LARYNGOSCOPE | 2025年
关键词
artificial intelligence; machine learning; MRI; vestibular schwannoma;
D O I
10.1002/lary.31979
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectiveAutomatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.MethodsDeep learning techniques have been employed for automatic VS tumor segmentation, including 2D, 2.5D, and 3D UNet-like architectures, which is a specific CNN designed to improve automatic segmentation for medical imaging. Specifically, we introduce a sequential connection where the first UNet's predicted segmentation map is passed to a second complementary network for refinement. Additionally, spatial attention mechanisms are utilized to further guide refinement in the second network.ResultsWe conducted experiments on both public and private datasets containing contrast-enhanced T1 and high-resolution T2-weighted magnetic resonance imaging (MRI). Across the public dataset, we observed consistent improvements in Dice scores for all variants of 2D, 2.5D, and 3D CNN methods, with a notable enhancement of 8.86% for the 2D UNet variant on T1. In our private dataset, a 3.75% improvement was reported for 2D T1. Moreover, we found that T1 images generally outperformed T2 in VS segmentation.ConclusionWe demonstrate that sequential connection of UNets combined with spatial attention mechanisms enhances VS segmentation performance across state-of-the-art 2D, 2.5D, and 3D deep learning methods.Level of Evidence3 Laryngoscope, 2024
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    Stember, J. N.
    Celik, H.
    Krupinski, E.
    Chang, P. D.
    Mutasa, S.
    Wood, B. J.
    Lignelli, A.
    Moonis, G.
    Schwartz, L. H.
    Jambawalikar, S.
    Bagci, U.
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 597 - 604
  • [42] RENAL CYST DETECTION IN ABDOMINAL MRI IMAGES USING DEEP LEARNING SEGMENTATION
    Sowmiya, S.
    Snehalatha, U.
    Murugan, Jayanth
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (05):
  • [43] deepPGSegNet: MRI-based pituitary gland segmentation using deep learning
    Choi, Uk-Su
    Sung, Yul-Wan
    Ogawa, Seiji
    FRONTIERS IN ENDOCRINOLOGY, 2024, 15
  • [44] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    J. N. Stember
    H. Celik
    E. Krupinski
    P. D. Chang
    S. Mutasa
    B. J. Wood
    A. Lignelli
    G. Moonis
    L. H. Schwartz
    S. Jambawalikar
    U. Bagci
    Journal of Digital Imaging, 2019, 32 : 597 - 604
  • [45] Prediction of femoral head collapse in osteonecrosis using deep learning segmentation and radiomics texture analysis of MRI
    Gao, Shihua
    Zhu, Haoran
    Wen, Moshan
    He, Wei
    Wu, Yufeng
    Li, Ziqi
    Peng, Jiewei
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [46] Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review
    Qiu, Bingjiang
    van der Wel, Hylke
    Kraeima, Joep
    Glas, Haye Hendrik
    Guo, Jiapan
    Borra, Ronald J. H.
    Witjes, Max Johannes Hendrikus
    van Ooijen, Peter M. A.
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (07):
  • [47] Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy
    Zhu, Jiayi
    Bolsterlee, Bart
    Chow, Brian V. Y.
    Cai, Chengxue
    Herbert, Robert D.
    Song, Yang
    Meijering, Erik
    NMR IN BIOMEDICINE, 2021, 34 (12)
  • [48] Implementation of deep learning algorithms for automatic MRI segmentation and Fat Fraction quantification in individual muscles.
    Martin, Sandra
    Trabelsi, Amira
    Andre, Remi
    Wojak, Julien
    Fortanier, Etienne
    Attarian, Shahram
    Guye, Maxime
    Dubois, Marc
    Abdeddaim, Redha
    Bendahan, David
    MEDICAL IMAGING 2023, 2023, 12464
  • [49] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [50] Deep learning for automatic segmentation of thigh and leg muscles
    Agosti, Abramo
    Shaqiri, Enea
    Paoletti, Matteo
    Solazzo, Francesca
    Bergsland, Niels
    Colelli, Giulia
    Savini, Giovanni
    Muzic, Shaun I.
    Santini, Francesco
    Deligianni, Xeni
    Diamanti, Luca
    Monforte, Mauro
    Tasca, Giorgio
    Ricci, Enzo
    Bastianello, Stefano
    Pichiecchio, Anna
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (03) : 467 - 483