共 55 条
Exploring spatial heterogeneity of e-scooter's relationship with ridesourcing using explainable machine learning
被引:0
作者:
Jiao, Junfeng
[1
]
Xu, Yiming
[1
]
Li, Yang
[1
]
机构:
[1] Univ Texas Austin, Sch Architecture, 310 Inner Campus Dr B7500, Austin, TX 78712 USA
基金:
美国国家科学基金会;
关键词:
E-scooter;
Ridesourcing;
Spatial heterogeneity;
Explainable machine learning;
Travel behavior;
SHARED E-SCOOTERS;
BUILT ENVIRONMENTS;
USAGE PATTERNS;
BIKE-SHARE;
WASHINGTON;
TRANSIT;
TRAVEL;
D O I:
10.1016/j.trd.2024.104452
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The expansion of e-scooter sharing system has introduced several novel interactions within the existing transportation system. However, few studies have explored how spatial contexts influence these interactions. To fill this gap, this study explored the spatial heterogeneity in e-scooter's relationship with ridesourcing using data from Chicago, IL. We developed a Light Gradient Boosting Machine (LightGBM) to estimate e-scooter sharing usage using ridesourcing trips along with associated built environment and socio-demographic variables. The model was interpreted using SHapley Additive exPlanations (SHAP). Results indicated that the threshold effects, where the positive relationship between e-scooter sharing and ridesourcing significantly weakened beyond a certain value, were more pronounced in areas with lower population density, fewer jobs, and fewer young, highly educated population. This is primarily attributed to the limited competitiveness of e-scooter sharing in these areas. These findings can assist cities in harmonizing e-scooter sharing and ridesourcing thus promoting sustainable transportation systems.
引用
收藏
页数:14
相关论文