Deep Alternate Kernel Fused Self-Attention Model-Based Lung Nodule Classification

被引:0
作者
Saritha, R. Rani [1 ]
Sangeetha, V. [1 ]
机构
[1] Karpagam Acad Higher Educ, Dept Comp Sci, Coimbatore, Tamil Nadu, India
关键词
pulmonary nodules; nodule detection; nodule classification; deep learning; convolutional neural networks; computer-aided diagnosis; medical imaging; AUTOMATIC DETECTION; SEGMENTATION;
D O I
10.12720/jait.15.11.1242-1251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer causes death with delayed diagnosis and inadequate treatment. Hence there is a need for a computer-aided detection method that can identify the nodule category whether it is benign or malignant to avoid delays in diagnosis with the help of Computerized Tomography (CT) scans. This study proposed a novel architecture Deep Alternate Kernel Fused Self-Attention Model (DAKFSAM) which utilizes the characteristics of the residual network in different forms as well as incorporates the efficiency of the attention model. This model fuses the features extracted from different alternate kernel models in three levels of process with three kinds of alternate kernel models. The self-attention model takes multiple kernel flows' visual attention features and merges them into a form to improve nodule classification efficiency. The performance assessment utilizes the Lung Image Database Consortium- Image Database Resource Initiative (LIDC-IDRI) dataset, and the DAKFSAM mode, as proposed, achieves an F1-Score of 94.85%.
引用
收藏
页码:1242 / 1251
页数:10
相关论文
共 50 条
  • [31] Magnetotelluric Data Inversion Based on Deep Learning With the Self-Attention Mechanism
    Xu, Kaijun
    Liang, Shuyuan
    Lu, Yan
    Hu, Zuzhi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [32] Deep Multi-Instance Learning with Induced Self-Attention for Medical Image Classification
    Li, Zhenliang
    Yuan, Liming
    Xu, Haixia
    Cheng, Rui
    Wen, Xianbin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 446 - 450
  • [33] Lung nodule detection and classification based on geometric fit in parametric form and deep learning
    Syed Muhammad Naqi
    Muhammad Sharif
    Arfan Jaffar
    Neural Computing and Applications, 2020, 32 : 4629 - 4647
  • [34] In-depth Recommendation Model Based on Self-Attention Factorization
    Ma, Hongshuang
    Liu, Qicheng
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (03): : 721 - 739
  • [35] Fake news detection and classification using hybrid BiLSTM and self-attention model
    Mohapatra, Asutosh
    Thota, Nithin
    Prakasam, P.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (13) : 18503 - 18519
  • [36] An Effective Personality-Based Model for Short Text Sentiment Classification Using BiLSTM and Self-Attention
    Liu, Kejian
    Feng, Yuanyuan
    Zhang, Liying
    Wang, Rongju
    Wang, Wei
    Yuan, Xianzhi
    Cui, Xuran
    Li, Xianyong
    Li, Hailing
    ELECTRONICS, 2023, 12 (15)
  • [37] Fake news detection and classification using hybrid BiLSTM and self-attention model
    Asutosh Mohapatra
    Nithin Thota
    P. Prakasam
    Multimedia Tools and Applications, 2022, 81 : 18503 - 18519
  • [38] ODTC: An online darknet traffic classification model based on multimodal self-attention chaotic mapping features
    Zhai, Jiangtao
    Sun, Haoxiang
    Xu, Chengcheng
    Sun, Wenqian
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 5056 - 5082
  • [39] Remote Sensing Image Scene Classification Based on Global Self-Attention Module
    Li, Qingwen
    Yan, Dongmei
    Wu, Wanrong
    REMOTE SENSING, 2021, 13 (22)
  • [40] SAFSN: A Self-Attention Based Neural Network for Encrypted Mobile Traffic Classification
    Zhang, Chengyuan
    An, Changqing
    Wang, Jessie Hui
    Zhao, Ziyi
    Yu, Tao
    Wang, Jilong
    IEEE CONGRESS ON CYBERMATICS / 2021 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS (ITHINGS) / IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) / IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) / IEEE SMART DATA (SMARTDATA), 2021, : 330 - 337