Clinical value of a radiomics model based on machine learning for the prediction of prostate cancer

被引:1
作者
Chen, Zhen-Lin [1 ]
Huang, Zhang-Cheng [3 ]
Lin, Shao-Shan [1 ]
Li, Zhi-Hao [1 ]
Dou, Rui-Ling [1 ]
Xu, Yue [1 ]
Jiang, Shao-Qin [1 ,2 ]
Li, Meng-Qiang [1 ]
机构
[1] Fujian Med Univ, Fujian Union Hosp, Dept Urol, Fuzhou, Peoples R China
[2] Second Mil Med Univ, Changhai Hosp, Dept Urol, Shanghai, Peoples R China
[3] Fujian Med Univ, Dept Neurol, Affiliated Hosp 2, Fuzhou, Peoples R China
关键词
Radiomics; prostate cancer; clinically significant prostate cancer; biopsy; diffusion-weighted imaging; apparent diffusion coefficient; T2-weighted imaging; machine learning; MRI; GUIDELINES; MORTALITY;
D O I
10.1177/03000605241275338
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objective Radiomics models have demonstrated good performance for the diagnosis and evaluation of prostate cancer (PCa). However, there are currently no validated imaging models that can predict PCa or clinically significant prostate cancer (csPCa). Therefore, we aimed to identify the best such models for the prediction of PCa and csPCa.Methods We performed a retrospective study of 942 patients with suspected PCa before they underwent prostate biopsy. MRI data were collected to manually segment suspicious regions of the tumor layer-by-layer. We then constructed models using the extracted imaging features. Finally, the clinical value of the models was evaluated.Results A diffusion-weighted imaging (DWI) plus apparent diffusion coefficient (ADC) random-forest model and a T2-weighted imaging plus ADC and DWI multilayer perceptron model were the best models for the prediction of PCa and csPCa, respectively. Areas under the curve (AUCs) of 0.942 and 0.999, respectively, were obtained for a training set. Internal validation yielded AUCs of 0.894 and 0.605, and external validation yielded AUCs of 0.732 and 0.623.Conclusion Models based on machine learning comprising radiomic features and clinical indicators showed good predictive efficiency for PCa and csPCa. These findings demonstrate the utility of radiomic models for clinical decision-making.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol [J].
Attard, Gerhardt ;
Murphy, Laura ;
Clarke, Noel W. ;
Sachdeva, Ashwin ;
Jones, Craig ;
Hoyle, Alex ;
Cross, William ;
Jones, Robert J. ;
Parker, Christopher C. ;
Gillessen, Silke ;
Cook, Adrian ;
Brawley, Chris ;
Gilson, Clare ;
Rush, Hannah ;
Abdel-Aty, Hoda ;
Amos, Claire L. ;
Murphy, Claire ;
Chowdhury, Simon ;
Malik, Zafar ;
Russell, J. Martin ;
Parkar, Nazia ;
Pugh, Cheryl ;
Diaz-Montana, Carlos ;
Pezaro, Carmel ;
Grant, Warren ;
Saxby, Helen ;
Pedley, Ian ;
O'Sullivan, Joe M. ;
Birtle, Alison ;
Gale, Joanna ;
Srihari, Narayanan ;
Thomas, Carys ;
Tanguay, Jacob ;
Wagstaff, John ;
Das, Prantik ;
Gray, Emma ;
Alzouebi, Mymoona ;
Parikh, Omi ;
Robinson, Angus ;
Montazeri, Amir H. ;
Wylie, James ;
Zarkar, Anjali ;
Cathomas, Richard ;
Brown, Michael D. ;
Jain, Yatin ;
Dearnaley, David P. ;
Mason, Malcolm D. ;
Gilbert, Duncan ;
Langley, Ruth E. ;
Millman, Robin .
LANCET ONCOLOGY, 2023, 24 (05) :443-456
[2]   Biology of prostate-specific antigen [J].
Balk, SP ;
Ko, YJ ;
Bubley, GJ .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (02) :383-391
[3]   Reply to Erik Rud and Eduard Baco's Letter to the Editor re: Re: Jeffrey C. Weinreb, Jelle O. Barentsz, Peter L. Choyke, et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol 2016; 69: 16-40 [J].
Barentsz, Jelle O. ;
Choyke, Peter L. ;
Cornud, Francois ;
Haider, Masoom A. ;
Macura, Katarzyna J. ;
Margolis, Daniel ;
Shtern, Faina ;
Padhani, Anwar R. ;
Tempany, Clare M. ;
Thoeny, Harriet C. ;
Verma, Sadhna ;
Weinreb, Jeffrey C. .
EUROPEAN UROLOGY, 2016, 70 (05) :E137-E138
[4]   Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer [J].
Bleker, Jeroen ;
Kwee, Thomas C. ;
Dierckx, Rudi A. J. O. ;
de Jong, Igle Jan ;
Huisman, Henkjan ;
Yakar, Derya .
EUROPEAN RADIOLOGY, 2020, 30 (03) :1313-1324
[5]   False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review [J].
Chalkidou, Anastasia ;
O'Doherty, Michael J. ;
Marsden, Paul K. .
PLOS ONE, 2015, 10 (05)
[6]   Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 [J].
Chen, Tong ;
Li, Mengjuan ;
Gu, Yuefan ;
Zhang, Yueyue ;
Yang, Shuo ;
Wei, Chaogang ;
Wu, Jiangfen ;
Li, Xin ;
Zhao, Wenlu ;
Shen, Junkang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) :875-884
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.7326/M14-0698, 10.1186/s12916-014-0241-z, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1002/bjs.9736, 10.1016/j.jclinepi.2014.11.010]
[8]   Prevention and early detection of prostate cancer [J].
Cuzick, Jack ;
Thorat, Mangesh A. ;
Andriole, Gerald ;
Brawley, Otis W. ;
Brown, Powel H. ;
Culig, Zoran ;
Eeles, Rosalind A. ;
Ford, Leslie G. ;
Hamdy, Freddie C. ;
Holmberg, Lars ;
Ilic, Dragan ;
Key, Timothy J. ;
La Vecchia, Carlo ;
Lilja, Hans ;
Marberger, Michael ;
Meyskens, Frank L. ;
Minasian, Lori M. ;
Parker, Chris ;
Parnes, Howard L. ;
Perner, Sven ;
Rittenhouse, Harry ;
Schalken, Jack ;
Schmid, Hans-Peter ;
Schmitz-Draeger, Bernd J. ;
Schroder, Fritz H. ;
Stenzl, Arnulf ;
Tombal, Bertrand ;
Wilt, Timothy J. ;
Wolk, Alicja .
LANCET ONCOLOGY, 2014, 15 (11) :E484-E492
[9]   Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer [J].
Fan, Xuhui ;
Xie, Ni ;
Chen, Jingwen ;
Li, Tiewen ;
Cao, Rong ;
Yu, Hongwei ;
He, Meijuan ;
Wang, Zilin ;
Wang, Yihui ;
Liu, Hao ;
Wang, Han ;
Yin, Xiaorui .
FRONTIERS IN ONCOLOGY, 2022, 12
[10]   Can Clinically Significant Prostate Cancer Be Detected with Multiparametric Magnetic Resonance Imaging? A Systematic Review of the Literature [J].
Futterer, Jurgen J. ;
Briganti, Alberto ;
De Visschere, Pieter ;
Emberton, Mark ;
Giannarini, Gianluca ;
Kirkham, Alex ;
Taneja, Samir S. ;
Thoeny, Harriet ;
Villeirs, Geert ;
Villers, Arnauld .
EUROPEAN UROLOGY, 2015, 68 (06) :1045-1053