From statistics to deep learning: Using large language models in psychiatric research

被引:1
作者
Hua, Yining [1 ,2 ]
Beam, Andrew [1 ,3 ]
Chibnik, Lori B. [1 ,4 ]
Torous, John [2 ,5 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[2] Beth Israel Deaconess Med Ctr, Dept Psychiat, 330 Brookline Ave, Boston, MA 02446 USA
[3] Harvard TH Chan Sch Publ Hlth, The CAUSALab, Boston, MA 02115 USA
[4] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA USA
[5] Harvard Med Sch, Dept Psychiat, Boston, MA USA
关键词
artificial intelligence; clinical psychiatry; large language models; machine learning; psychiatric epidemiology; psychiatry;
D O I
10.1002/mpr.70007
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
BackgroundLarge Language Models (LLMs) hold promise in enhancing psychiatric research efficiency. However, concerns related to bias, computational demands, data privacy, and the reliability of LLM-generated content pose challenges.GapExisting studies primarily focus on the clinical applications of LLMs, with limited exploration of their potentials in broader psychiatric research.ObjectiveThis study adopts a narrative review format to assess the utility of LLMs in psychiatric research, beyond clinical settings, focusing on their effectiveness in literature review, study design, subject selection, statistical modeling, and academic writing.ImplicationThis study provides a clearer understanding of how LLMs can be effectively integrated in the psychiatric research process, offering guidance on mitigating the associated risks and maximizing their potential benefits. While LLMs hold promise for advancing psychiatric research, careful oversight, rigorous validation, and adherence to ethical standards are crucial to mitigating risks such as bias, data privacy concerns, and reliability issues, thereby ensuring their effective and responsible use in improving psychiatric research.
引用
收藏
页数:9
相关论文
共 35 条
[2]  
Antu S. A., 2023, LLM@ AIED, P8
[3]  
Artificial Intelligence (AI), Nature Portfolio
[4]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[5]  
Black S, 2022, PROCEEDINGS OF WORKSHOP ON CHALLENGES & PERSPECTIVES IN CREATING LARGE LANGUAGE MODELS (BIGSCIENCE EPISODE #5), P95
[6]   ChatGPT: five priorities for research [J].
Bockting, Claudi ;
van Dis, Eva A. M. ;
Bollen, Johan ;
van Rooij, Robert ;
Zuidema, Willem L. .
NATURE, 2023, 614 (7947) :224-226
[7]  
Chandel S., 2022, arXiv
[8]   "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy [J].
Dwivedi, Yogesh K. ;
Kshetri, Nir ;
Hughes, Laurie ;
Slade, Emma Louise ;
Jeyaraj, Anand ;
Kar, Arpan Kumar ;
Baabdullah, Abdullah M. ;
Koohang, Alex ;
Raghavan, Vishnupriya ;
Ahuja, Manju ;
Albanna, Hanaa ;
Albashrawi, Mousa Ahmad ;
Al-Busaidi, Adil S. ;
Balakrishnan, Janarthanan ;
Barlette, Yves ;
Basu, Sriparna ;
Bose, Indranil ;
Brooks, Laurence ;
Buhalis, Dimitrios ;
Carter, Lemuria ;
Chowdhury, Soumyadeb ;
Crick, Tom ;
Cunningham, Scott W. ;
Davies, Gareth H. ;
Davison, Robert M. ;
De, Rahul ;
Dennehy, Denis ;
Duan, Yanqing ;
Dubey, Rameshwar ;
Dwivedi, Rohita ;
Edwards, John S. ;
Flavian, Carlos ;
Gauld, Robin ;
Grover, Varun ;
Hu, Mei-Chih ;
Janssen, Marijn ;
Jones, Paul ;
Junglas, Iris ;
Khorana, Sangeeta ;
Kraus, Sascha ;
Larsen, Kai R. ;
Latreille, Paul ;
Laumer, Sven ;
Malik, F. Tegwen ;
Mardani, Abbas ;
Mariani, Marcello ;
Mithas, Sunil ;
Mogaji, Emmanuel ;
Nord, Jeretta Horn ;
O'Connor, Siobhan .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2023, 71
[9]   Guidance for Authors, Peer Reviewers, and Editors on Use of AI, Language Models, and Chatbots [J].
Flanagin, Annette ;
Kendall-Taylor, Jacob ;
Bibbins-Domingo, Kirsten .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2023, 330 (08) :702-703
[10]  
Galatzer-Levy IR, 2023, Arxiv, DOI [arXiv:2308.01834, 10.48550/arXiv.2308.01834, DOI 10.48550/ARXIV.2308.01834]