Artificial intelligence in interventional radiotherapy (brachytherapy) : Enhancing patient-centered care and addressing patients' ' needs

被引:0
作者
Fionda, Bruno [1 ]
Placidi, Elisa [1 ]
de Ridder, Mischa [2 ]
Strigari, Lidia [3 ]
Patarnello, Stefano [4 ]
Tanderup, Kari [5 ,6 ]
Hannoun-Levi, Jean-Michel [7 ]
Siebert, Frank-Andre [8 ]
Boldrini, Luca [1 ]
Gambacorta, Maria Antonietta [1 ,9 ]
De Spirito, Marco [10 ,11 ]
Sala, Evis [1 ,9 ]
Tagliaferri, Luca [1 ,9 ]
机构
[1] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini & Radioterapia Onco, Rome, Italy
[2] Univ Med Ctr Utrecht, Dept Radiat Oncol, Utrecht, Netherlands
[3] IRCCS Azienda Ospedaliero Univ Bologna, Dept Med Phys, Bologna, Italy
[4] Fdn Policlin Univ A Gemelli IRCCS, Real World Data Facil, Gemelli Generator, Rome, Italy
[5] Aarhus Univ Hosp, Dept Oncol, Aarhus, Denmark
[6] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[7] Univ Cote Azur, Antoine Lacassagne Canc Ctr, Dept Radiat Oncol, Nice, France
[8] Univ Hosp Schleswig Holstein, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany
[9] Univ Cattolica Sacro Cuore, Ist Radiol, Rome, Italy
[10] Fdn Policlin Univ A Gemelli IRCCS, Rome, Italy
[11] Univ Cattolica Sacro Cuore, Dipartimento Neurosci, Sez Fis, Rome, Italy
关键词
Artificial intelligence; Interventional radiotherapy; Brachytherapy; Machine learning; Deep learning; DOSE-RATE BRACHYTHERAPY; AUTOMATIC SEGMENTATION; LEARNING-CURVE; PROSTATE; PREDICTION; RECONSTRUCTION; IMAGES; ART; AI;
D O I
10.1016/j.ctro.2024.100865
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
引用
收藏
页数:7
相关论文
共 107 条
  • [1] Brachytherapy outcome modeling in cervical cancer patients: A predictive machine learning study on patient-specific clinical, physical and dosimetric parameters
    Abdalvand, Neda
    Sadeghi, Mahdi
    Mahdavi, Seied Rabi
    Abdollahi, Hamid
    Qasempour, Younes
    Mohammadian, Fatemeh
    Birgani, Mohammad Javad Tahmasebi
    Hosseini, Khadijeh
    [J]. BRACHYTHERAPY, 2022, 21 (06) : 769 - 782
  • [2] Revolutionizing healthcare: the role of artificial intelligence in clinical practice
    Alowais, Shuroug A.
    Alghamdi, Sahar S.
    Alsuhebany, Nada
    Alqahtani, Tariq
    Alshaya, Abdulrahman I.
    Almohareb, Sumaya N.
    Aldairem, Atheer
    Alrashed, Mohammed
    Bin Saleh, Khalid
    Badreldin, Hisham A.
    Al Yami, Majed S.
    Al Harbi, Shmeylan
    Albekairy, Abdulkareem M.
    [J]. BMC MEDICAL EDUCATION, 2023, 23 (01)
  • [3] Deep learning-based digitization of prostate brachytherapy needles in ultrasound images
    Andersen, Christoffer
    Ryden, Tobias
    Thunberg, Per
    Lagerlof, Jakob H.
    [J]. MEDICAL PHYSICS, 2020, 47 (12) : 6414 - 6420
  • [4] Artificial intelligence in brachytherapy: a summary of recent developments
    Banerjee, Susovan
    Goyal, Shikha
    Mishra, Saumyaranjan
    Gupta, Deepak
    Bisht, Shyam Singh
    Venketesan, K.
    Narang, Kushal
    Kataria, Tejinder
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1122)
  • [5] Towards artificial intelligence-based automated treatment planning in clinical practice: A prospective study of the first clinical experiences in high-dose-rate prostate brachytherapy
    Barten, Danique L. J.
    Pieters, Bradley R.
    Bouter, Anton
    van der Meer, Marjolein C.
    Maree, Stef C.
    Hinnen, Karel A.
    Westerveld, Henrike
    Bosman, Peter A. N.
    Alderliesten, Tanja
    van Wieringen, Niek
    Bel, Arjan
    [J]. BRACHYTHERAPY, 2023, 22 (02) : 279 - 289
  • [6] Bernier J, 2002, EUR J CANCER, V38, pS155
  • [7] Aleatoric and epistemic uncertainty extraction of patient-specific deep learning-based dose predictions in LDR prostate brachytherapy
    Berumen, Francisco
    Ouellet, Samuel
    Enger, Shirin
    Beaulieu, Luc
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (08)
  • [8] Fast D M,M calculation in LDR brachytherapy using deep learning methods
    Berumen, Francisco
    Enger, Shirin A.
    Beaulieu, Luc
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (11)
  • [9] A machine-learning approach based on 409 treatments to predict optimal number of iodine-125 seeds in low-dose-rate prostate
    Boussion, Nicolas
    Schick, Ulrike
    Dissaux, Gurvan
    Ollivier, Luc
    Goasduff, Gaelle
    Pradier, Olivier
    Valeri, Antoine
    Visvikis, Dimitris
    [J]. JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2021, 13 (05) : 541 - 548
  • [10] Learning curve of MRI-based planning for high-dose-rate brachytherapy for prostate cancer
    Buus, Simon
    Rylander, Susanne
    Hokland, Steffen
    Sondergaard, Christian Skou
    Pedersen, Erik Morre
    Tanderup, Kari
    Bentzen, Lise
    [J]. BRACHYTHERAPY, 2016, 15 (04) : 426 - 434