Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc-Iodine Batteries

被引:5
作者
Zhou, Le [1 ]
Li, Xiang [1 ]
Chen, Hui [1 ]
Zheng, Hangwen [1 ]
Zhang, Tianyu [2 ]
Ning, Jiqiang [3 ]
Wang, Haiyan [1 ]
Hu, Yong [2 ]
机构
[1] Zhejiang Normal Univ, Dept Chem, Key Lab Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
[2] Zhejiang A&F Univ, Coll Chem & Mat Engn, Hangzhou 311300, Peoples R China
[3] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
-OH-functionalized carbon; -OH<middle dot><middle dot><middle dot>Ihydrogen bond; oxygen-containing groups; iodinereduction reaction; zinc-iodine batteries; AREAL-CAPACITY; CARBON; HYDROGEN; PERFORMANCE; REDUCTION; CHEMISTRY; CATALYSTS; BR;
D O I
10.1021/acsami.4c11550
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rechargeable zinc-iodine (Zn-I-2) batteries have shown immense potential for grid-scale energy storage applications, but there remain challenges of improving efficiency and cycling stability due to the sluggish iodine reduction reaction (IRR) kinetics and serious shuttle problem of polyiodides. We herein demonstrate an efficient metal-free hydroxyl (-OH)-functionalized carbon catalyst that effectively boosts the performance of Zn-I-2 batteries. It has been found that the obtained electrocatalytic performance is strongly correlated with the surface oxygen chemical environment in the carbon matrix. Both theoretical calculations and experimental measurements have uncovered that the -OH group, rather than carbonyl (-C & boxH;O) and carboxyl (-COOH), provides the active electrocatalytic site for IRR, improves the iodine redox kinetics and the electrochemical reversibility, and facilitates I-2 nucleation. As confirmed by a series of in situ and ex situ spectroscopy techniques, due to the favorable reaction thermodynamics and the lowered energy barrier for I-3(-) dissociation, the O-H<middle dot><middle dot><middle dot>I channels can effectively trigger the direct transformation of I-2/I- and avoid the formation of stable polyiodides. As a result, the as-assembled battery of I-2/oxygen-functionalized carbon cloth (I-2/OCC-2)//Zn exhibits a high capacity of 2.27 mA h cm(-2) at 1 mA cm(-2), outstanding rate capability with 89.0% capacity retention at 20 mA cm(-2), and long-term stability of 10,000 cycles.
引用
收藏
页码:53881 / 53893
页数:13
相关论文
共 33 条
  • [31] 2D Mesoporous Naphthalene-Based Conductive Heteroarchitectures toward Long-Life, High-Capacity Zinc-Iodine Batteries
    Wei, Facai
    Zhang, Tingting
    Xu, Hengyue
    Peng, Yonghui
    Guo, Haitao
    Wang, Yuexi
    Guan, Shaojian
    Fu, Jianwei
    Jing, Chengbin
    Cheng, Jiangong
    Liu, Shaohua
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (04)
  • [32] Shuttle-free zinc-iodine batteries enabled by a cobalt single atom anchored on N-doped porous carbon host with ultra-high specific surface area
    Sun, Jiaqi
    Wang, Zuoshu
    Zhang, Jie
    Wang, Dewei
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [33] Hetero-Anionic Structure Activated Co-S Bonds Promote Oxygen Electrocatalytic Activity for High-Efficiency Zinc-Air Batteries
    Cai, Jingjing
    Zhang, Huijian
    Zhang, Lizhu
    Xiong, Yuqing
    Ouyang, Ting
    Liu, Zhao-Qing
    ADVANCED MATERIALS, 2023, 35 (36)