Waveguide-Integrated MoS2 Field-Effect Transistors on Thin-Film Lithium Niobate with High Responsivity and Ultra-Low Dark Current

被引:0
作者
Yang, Fan [1 ,2 ]
Hu, Youtian [1 ]
Ou, Jiale [1 ]
Li, Qingyun [1 ]
Xie, Xiangxing [1 ]
Han, Huangpu [1 ]
Cai, Changlong [2 ]
Ruan, Shuangchen [1 ]
Xiang, Bingxi [1 ]
机构
[1] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China
[2] Xian Technol Univ, Sch Optoelect Engn, Xian 710021, Peoples R China
来源
ACS PHOTONICS | 2025年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
thin-film lithium niobate; photodetector; field-effecttransistor; MoS2; integrated photonics; PHOTODETECTOR; GRAPHENE; DIODE;
D O I
10.1021/acsphotonics.4c02618
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study investigates the photoelectric performance of MoS2-based field-effect transistors (FETs) integrated with a thin-film lithium niobate (TFLN) waveguide platform. The MoS2 FET demonstrates high photodetection capabilities across a broad wavelength range from visible to near-infrared (up to 1550 nm). By adjusting the gate voltage from 0 V to -25 V, the dark current is reduced by over 6 orders of magnitude, reaching approximately 2 pA. Under 635 nm illumination, the device achieves a maximum responsivity of 940 A/W (at an input power of 35 pW), an on/off ratio (I-light/I-dark) of 105, and a detectivity of 6.27 x 10(14) W-1. Significant photoresponse is also observed at telecommunication wavelengths with a responsivity of 68.7 mA/W and a detectivity of 4.58 x 10(10) W-1 at 1310 nm. Additionally, the response times is measured to be under 300 mu s across all tested wavelengths. The combination of two-dimensional material FET and TFLN offers an attractive platform for realizing high-performance optoelectronic devices and multifunctional integrated photonic circuits.
引用
收藏
页码:2128 / 2136
页数:9
相关论文
共 66 条
[1]   High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform [J].
Ahmed, Abu Naim R. ;
Shi, Shouyuan ;
Mercante, Andrew J. ;
Prather, Dennis W. .
OPTICS EXPRESS, 2019, 27 (21) :30741-30751
[2]  
Bie YQ, 2017, NAT NANOTECHNOL, V12, P1124, DOI [10.1038/nnano.2017.209, 10.1038/NNANO.2017.209]
[3]   Lithium niobate photonics: Unlocking the electromagnetic spectrum [J].
Boes, Andreas ;
Chang, Lin ;
Langrock, Carsten ;
Yu, Mengjie ;
Zhang, Mian ;
Lin, Qiang ;
Fejer, Martin ;
Bowers, John ;
Mitchell, Arnan .
SCIENCE, 2023, 379 (6627)
[4]   Photocurrent generation with two-dimensional van der Waals semiconductors [J].
Buscema, Michele ;
Island, Joshua O. ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (11) :3691-3718
[5]   Advances in lithium niobate photonics: development status and perspectives [J].
Chen, Guanyu ;
Li, Nanxi ;
Ng, Jun Da ;
Lin, Hong-Lin ;
Zhou, Yanyan ;
Fu, Yuan Hsing ;
Lee, Lennon Yao Ting ;
Yu, Yu ;
Liu, Ai-Qun ;
Danner, Aaron J. .
ADVANCED PHOTONICS, 2022, 4 (03)
[6]   Ultrasensitive Bidirectional Photoresponse SnSe2 Photodetector Integration with Thin-Film Lithium Niobate Photonics [J].
Chen, Jiamin ;
Lu, Shijia ;
Hu, Youtian ;
Yang, Fan ;
Han, Huangpu ;
Kong, Lingbing ;
He, Bin ;
Ruan, Shuangchen ;
Xiang, Bingxi .
ADVANCED OPTICAL MATERIALS, 2024, 12 (05)
[7]   A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform [J].
Churaev, Mikhail ;
Wang, Rui Ning ;
Riedhauser, Annina ;
Snigirev, Viacheslav ;
Blesin, Terence ;
Mohl, Charles ;
Anderson, MilesH. ;
Siddharth, Anat ;
Popoff, Youri ;
Drechsler, Ute ;
Caimi, Daniele ;
Honl, Simon ;
Riemensberger, Johann ;
Liu, Junqiu ;
Seidler, Paul ;
Kippenberg, Tobias J. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Silicon photodetector for integrated lithium niobate photonics [J].
Desiatov, Boris ;
Loncar, Marko .
APPLIED PHYSICS LETTERS, 2019, 115 (12)
[9]   Accurate characterization of next-generation thin-film photodetectors [J].
Fang, Yanjun ;
Armin, Ardalan ;
Meredith, Paul ;
Huang, Jinsong .
NATURE PHOTONICS, 2019, 13 (01) :1-4
[10]   Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity [J].
Flory, Nikolaus ;
Ma, Ping ;
Salamin, Yannick ;
Emboras, Alexandros ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Leuthold, Juerg ;
Novotny, Lukas .
NATURE NANOTECHNOLOGY, 2020, 15 (02) :118-+