Geometric Aspects of a Spin Chain

被引:0
作者
Entov, Michael [1 ]
Polterovich, Leonid [2 ]
Ryzhik, Lenya [3 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Hefa, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
以色列科学基金会;
关键词
Curie-Weiss model; Mean-field Ising chain; Non-equilibrium thermodynamics; Legendrian submanifold; Contact manifold; Glauber dynamics; DYNAMICS; EQUATIONS; THERMODYNAMICS; TOPOLOGY; MODEL; TIME;
D O I
10.1007/s10955-024-03332-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss non-equilibrium thermodynamics of the mean-field Ising model from a geometric perspective, focusing on the thermodynamic limit. When the number of spins is finite, the Gibbs equilibria form a smooth Legendrian submanifold in the thermodynamic phase space whose points describe the stable macroscopic states of the system. We describe the convergence of these smooth Legendrian submanifolds, as the number of spins goes to infinity, to a singular Legendrian submanifold, admitting an analytic continuation that contains both the stable and metastable states. We also discuss the relaxation to a Gibbs equilibrium when the physical parameters are changed abruptly. The relaxation is defined via the gradient flow of the free energy with respect to the Wasserstein metric on microscopic states, that is, in the geometric language, via the gradient flow of the generating function of the equilibrium Legendrian with respect to the ghost variables. This leads to a discrete Fokker-Planck equation when the number of spins is finite. We show that in the thermodynamic limit this description is closely related to the seminal model of relaxation proposed by Glauber. Finally, we find a special range of parameters where such relaxation happens instantaneously, along the Reeb chords connecting the initial and the terminal Legendrian submanifolds.
引用
收藏
页数:36
相关论文
共 37 条
[1]  
[Anonymous], 1999, J BIOL RHYTHM
[2]  
Berezin F., 2009, Lectures on statistical physics, 1966-67
[3]  
Bovier A, 2015, GRUNDLEHR MATH WISS, V351, P1, DOI 10.1007/978-3-319-24777-9
[4]   Contact symmetries and Hamiltonian thermodynamics [J].
Bravetti, A. ;
Lopez-Monsalvo, C. S. ;
Nettel, F. .
ANNALS OF PHYSICS, 2015, 361 :377-400
[5]   Contact topology and non-equilibrium thermodynamics [J].
Entov, Michael ;
Polterovich, Leonid .
NONLINEARITY, 2023, 36 (06) :3349-3375
[6]   GRADIENT FLOW STRUCTURE FOR MCKEAN-VLASOV EQUATIONS ON DISCRETE SPACES [J].
Erbar, Matthias ;
Fathi, Max ;
Laschos, Vaios ;
Schlichting, Andre .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) :6799-6833
[7]   Low-Temperature Dynamics of the Curie-Weiss Model: Periodic Orbits, Multiple Histories, and Loss of Gibbsianness [J].
Ermolaev, Victor ;
Kuelske, Christof .
JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (05) :727-756
[8]  
Friedli S., 2018, Statistical mechanics of lattice systems. A concrete mathematical introduction
[9]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[10]   From the Fokker-Planck equation to a contact Hamiltonian system [J].
Goto, Shin-itiro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (33)