A MODIFIED EXPONENTIATED INVERTED WEIBULL DISTRIBUTION USING MODI FAMILY

被引:0
|
作者
Muhimpundu, Yvana [1 ]
Odongo, Leo odiwuor [2 ]
Kube, Ananda omutokoh [2 ]
机构
[1] Pan African Univ, Dept Math, Inst Basic Sci Technol & Innovat PAUSTI, Nairobi, Kenya
[2] Kenyatta Univ KU, Dept Math & Actuarial Sci, Nairobi, Kenya
关键词
exponentiated inverted Weibull; Modi family; maximum Likelihood estimation; PARAMETER;
D O I
10.28919/cmbn/9066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new extension of the Exponentiated Inverted Weibull distribution using the Modi family, called the Modi Exponentiated Inverted Weibull (MEIW) distribution that adds an extra shape parameter, allowing for a wider range of shapes for failure rates. Mathematical properties were developed, including hazard rate, survival function, reversed hazard rate, quantile function, moments, order statistics, and Re<acute accent>nyi Entropy. Maximum Likelihood Estimation is employed for parameter estimation, with the performance of the estimators assessed through Monte Carlo simulation. The new distribution is fitted to the two real data sets and compared with some existing distributions such as Exponentiated Inverted Weibull (EIW), Inverse Weibull (IW), and Weibull (WE) distributions. The goodness-of-fit statistics and information criteria values demonstrated that the new distribution fits better the two real data sets than the other distributions.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Reliability analysis using exponentiated Weibull distribution and inverse power law
    Carlos Mendez-Gonzalez, Luis
    Alberto Rodriguez-Picon, Luis
    Valles-Rosales, Delia Julieta
    Alvarado Iniesta, Alejandro
    Quezada Carreon, Abel Eduardo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (04) : 1219 - 1230
  • [32] A simple derivation of moments of the Exponentiated Weibull distribution
    Choudhury, A
    METRIKA, 2005, 62 (01) : 17 - 22
  • [33] The Exponentiated Weibull-Pareto Distribution with Application
    Afify, Ahmed Z.
    Yousof, Haitham M.
    Hamedani, G. G.
    Aryal, Gokarna R.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (04): : 326 - 344
  • [34] A Simple Derivation of Moments of the Exponentiated Weibull Distribution
    Amit Choudhury
    Metrika, 2005, 62 : 17 - 22
  • [35] THE EXTENDED EXPONENTIATED WEIBULL DISTRIBUTION AND ITS APPLICATIONS
    Mahmoudi, Eisa
    Meshkat, Rahmat Sadat
    Kargar, Batool
    Kundu, Debasis
    STATISTICA, 2018, 78 (04) : 363 - 396
  • [36] Estimates of the PDF and the CDF of the exponentiated Weibull distribution
    Alizadeh, M.
    Bagheri, S. F.
    Jamkhaneh, E. Baloui
    Nadarajah, S.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (03) : 695 - 716
  • [37] The Exponentiated Weibull-Pareto Distribution with Application
    Ahmed Z. Afify
    Haitham M. Yousof
    G. G. Hamedani
    Gokarna R. Aryal
    Journal of Statistical Theory and Applications, 2016, 15 (4): : 326 - 344
  • [38] Survival Analysis of Colorectal Cancer Patients Using Exponentiated Weibull Distribution
    Yoosefi, Moein
    Baghestani, Ahmad Reza
    Khadembashi, Naghmeh
    Pourhoseingholi, Mohamad Amin
    Baghban, Alireza Akbarzadeh
    Khosrovirad, Azin
    INTERNATIONAL JOURNAL OF CANCER MANAGEMENT, 2018, 11 (03)
  • [39] Bayesian Modeling of 3-Component Mixture of Exponentiated Inverted Weibull Distribution under Noninformative Prior
    Cheema, Ammara Nawaz
    Aslam, Muhammad
    Almanjahie, Ibrahim M.
    Ahmad, Ishfaq
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [40] Exponentiated Weibull distribution family under aperture averaging Gaussian beam waves: comment
    Yura, H. T.
    Rose, T. S.
    OPTICS EXPRESS, 2012, 20 (18): : 20680 - 20683