G protein-coupled receptors (GPCRs) constitute the largest and most frequently used family of molecular drug targets. The simplicity of GPCR drug design results from their common seven-transmembrane-helix topology and well-understood signaling pathways. GPCRs are extremely sensitive to slight changes in the chemical structure of compounds, which allows for the reliable design of highly selective and specific drugs. Only recently has the number of GPCR structures, both in their active and inactive conformations, together with their active ligands, become sufficient to comprehensively apply machine learning in decision support systems to predict compound activity in drug design. Here, we describe GPCRVS, an efficient machine learning system for the online assessment of the compound activity against several GPCR targets, including peptide- and protein-binding GPCRs, which are the most difficult for virtual screening tasks. As a decision support system, GPCRVS evaluates compounds in terms of their activity range, the pharmacological effect they exert on the receptor, and the binding mode they could demonstrate for different types and subtypes of GPCRs. GPCRVS allows for the evaluation of compounds ranging from small molecules to short peptides provided in common chemical file formats. The results of the activity class assignment and the binding affinity prediction are provided in comparison with predictions for known active ligands of each included GPCR. Multiclass classification in GPCRVS, handling incomplete and fuzzy biological data, was validated on ChEMBL and Google Patents-retrieved data sets for class B GPCRs and chemokine CC and CXC receptors.