Numerical Validation of Certain Cubic-Quartic Optical Structures Associated with the Class of Nonlinear Schrödinger Equation

被引:0
|
作者
Almalki, Afrah M. [1 ]
Alqarni, Alyaa A. [2 ]
Bakodah, Huda O. [1 ]
Alshaery, Aisha A. [1 ]
机构
[1] Univ Jeddah, Fac Sci, Dept Math & Stat, Jeddah 21589, Saudi Arabia
[2] Univ Bisha, Fac Sci, Dept Math, POB 551, Bisha 61922, Saudi Arabia
来源
SYMMETRY-BASEL | 2025年 / 17卷 / 01期
关键词
numerical validation; improved decomposition method; cubic-quartic nonlinearity; sine-Gordon technique; birefringent fibers; DECOMPOSITION METHOD; SOLITONS; KERR;
D O I
10.3390/sym17010051
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents a comprehensive investigation of cubic-quartic solitons within birefringent optical fibers, focusing on the effects of the Kerr law on the refractive index. The researchers have derived soliton solutions analytically using the sine-Gordon function technique. To validate their analytical results, the study employs the improved Adomian decomposition method, a numerical technique known for its efficiency and accuracy in solving nonlinear problems. This method effectively approximates solutions while minimizing computational errors, allowing for reliable numerical simulations that corroborate the analytical findings. The insights gained from this research contribute to a deeper understanding of the symmetry properties involved in nonlinear wave propagation in optical fibers. The study highlights the significant role of nonlinearities in shaping the behavior of waves within these systems. The use of proposed method not only serves as a checking mechanism for the sine-Gordon solutions but also illustrates its potential applicability to other nonlinear systems exhibiting complex symmetry behaviors. This versatility could lead to new exploration fronts in nonlinear optics and photonics, expanding the toolkit available for researchers in these rapidly evolving fields.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] On solving cubic-quartic nonlinear Schrodinger equation in a cnoidal trap
    Debnath, Argha
    Khan, Ayan
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (09)
  • [12] Cubic-quartic optical solitons in birefringent fibers with Sasa-Satsuma equation
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Shohib, Reham M. A.
    Biswas, Anjan
    Triki, Houria
    Yildirim, Yakup
    Alshomrani, Ali S.
    Alshehri, Hashim M.
    OPTIK, 2022, 261
  • [13] Optical Soliton Solutions of the Cubic-Quartic Nonlinear Schrodinger and Resonant Nonlinear Schrodinger Equation with the Parabolic Law
    Gao, Wei
    Ismael, Hajar Farhan
    Husien, Ahmad M.
    Bulut, Hasan
    Baskonus, Haci Mehmet
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [14] Lie symmetry analysis for cubic-quartic nonlinear Schrodinger's equation
    Bonsal, Anupma
    Biswas, Anjan
    Zhou, Qin
    Babatin, M. M.
    OPTIK, 2018, 169 : 12 - 15
  • [15] Parametric instability in the pure-quartic nonlinear Schrödinger equation
    Zhang, Yun-Hong
    Liu, Chong
    CHINESE PHYSICS B, 2024, 33 (03)
  • [16] Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index
    Yildirim, Yakup
    Biswas, Anjan
    Guggilla, Padmaja
    Mallawi, Fouad
    Belic, Milivoj R.
    OPTIK, 2020, 203
  • [17] Cubic-Quartic Optical Soliton Pertubation with Complex Ginzburg-Landau Equation
    Biswas, Anjan
    Yildirim, Yakup
    Ekici, Mehmet
    Guggilla, Padmaja
    Khan, Salam
    Gonzalez-Gaxiola, O.
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (06): : 937 - 1004
  • [18] On the solitonic wave structures for the perturbed nonlinear Schrödinger equation arising in optical fibers
    Fazal Badshah
    Kalim U. Tariq
    Ahmet Bekir
    Optical and Quantum Electronics, 2024, 56
  • [19] On the solitonic wave structures for the perturbed nonlinear Schrödinger equation arising in optical fibers
    Badshah, Fazal
    Tariq, Kalim U.
    Bekir, Ahmet
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [20] Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach
    Nan Liu
    Boling Guo
    Nonlinear Dynamics, 2020, 100 : 629 - 646