Electric-Field Control of the Local Thermal Conductivity in Charge Transfer Oxides

被引:0
|
作者
Varela-Dominguez, Noa [1 ]
Claro, Marcel S. [1 ]
Vazquez-Vazquez, Carlos [2 ]
Lopez-Quintela, Manuel Arturo [2 ]
Rivadulla, Francisco [1 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, Dept Quim Fis, Santiago De Compostela 15782, Spain
[2] Univ Santiago de Compostela, Dept Quim Fis, Inst Mat iMATUS, Santiago De Compostela 15782, Spain
关键词
conductive AFM; thermal conductivity; thermal management; thin films; METAL-INSULATOR-TRANSITION; OXIDATION; SURFACE; FILMS;
D O I
10.1002/adma.202413045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phonons, the collective excitations responsible for heat transport in crystalline insulating solids, lack electric charge or magnetic moment, which complicates their active control via external fields. This presents a significant challenge in designing thermal equivalents of basic electronic circuit elements, such as transistors or diodes. Achieving these goals requires precise and reversible modification of thermal conductivity in materials. In this work, the continuous tuning of local thermal conductivity in charge-transfer SrFeO3-x and La0.6Sr0.4CoO3-x oxides using a voltage-biased Atomic Force Microscopy (AFM) tip at room temperature is demonstrated. This method allows the creation of micron-sized domains with well-defined thermal conductivity, achieving reductions of up to 50%, measured by spatially resolved Frequency Domain Thermoreflectance (FDTR). By optimizing the oxide's chemical composition, the thermal states remain stable under normal atmospheric conditions but can be reverted to their original values through thermal annealing in air. A comparison between Mott-Hubbard and charge-transfer oxides reveals the critical role of redox-active lattice oxygen in ensuring full reversibility of the process. This approach marks a significant step toward fabricating oxide-based tunable microthermal resistances and other elements for thermal circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ELECTRIC-FIELD DEPENDENT CONDUCTIVITY OF METALLIC POLYACETYLENE
    EPSTEIN, AJ
    GIBSON, HW
    CHAIKIN, PM
    CLARK, WG
    GRUNER, G
    CHEMICA SCRIPTA, 1981, 17 (1-5): : 135 - 136
  • [22] Erratum: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic
    Ying-Hao Chu
    Lane W. Martin
    Mikel B. Holcomb
    Martin Gajek
    Shu-Jen Han
    Qing He
    Nina Balke
    Chan-Ho Yang
    Donkoun Lee
    Wei Hu
    Qian Zhan
    Pei-Ling Yang
    Arantxa Fraile-rodríguez
    Andreas Scholl
    Shan X. Wang
    R. Ramesh
    Nature Materials, 2008, 7 : 678 - 678
  • [23] ELECTRIC-FIELD OF A MOVING TEST CHARGE IN A PLASMA
    YU, MY
    STENFLO, L
    SHUKLA, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 979 - 977
  • [24] CHARGE SEPARATION DUE TO RIMING IN AN ELECTRIC-FIELD
    AUFDERMA.AN
    JOHNSON, DA
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1972, 98 (416) : 369 - &
  • [25] Modeling of thermal/electric-field poling
    Liu, XM
    Zhang, HY
    Guo, YL
    Zheng, XP
    Li, YH
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (8A): : L807 - L809
  • [26] THE EFFECT OF CHARGE AND ELECTRIC-FIELD ON THE SHAPE OF RAINDROPS
    ZRNIC, DS
    DOVIAK, RJ
    MAHAPATRA, PR
    RADIO SCIENCE, 1984, 19 (01) : 75 - 80
  • [27] EFFECT OF ELECTRIC-FIELD ON CHARGE MOBILITY IN POLYMERS
    NOVIKOV, SV
    VANNIKOV, AV
    KHIMICHESKAYA FIZIKA, 1991, 10 (12): : 1692 - 1698
  • [28] THERMAL-CONDUCTIVITY OF KH2PO4 IN AN APPLIED ELECTRIC-FIELD
    LIN, FQ
    ZHU, DM
    PHYSICAL REVIEW B, 1994, 49 (22): : 16025 - 16027
  • [29] ELECTRIC-FIELD INDUCED EMISSION AS A DIAGNOSTIC-TOOL FOR MEASUREMENT OF LOCAL ELECTRIC-FIELD STRENGTHS
    DHARAMSI, AN
    SCHOENBACH, KH
    JOURNAL OF APPLIED PHYSICS, 1991, 69 (05) : 2889 - 2895
  • [30] Electric-field effects in resistive oxides: facts and artifacts
    Fisher, B.
    Genossar, J.
    Patlagan, L.
    Reisner, G. M.
    JEMS 2012 - JOINT EUROPEAN MAGNETIC SYMPOSIA, 2012, 40