On the Distance Sets Spanned by Sets of Dimension d/2 in Rd

被引:0
作者
Shmerkin, Pablo [1 ]
Wang, Hong [2 ,3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] UCLA, Dept Math, Los Angeles, CA USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Distance sets; Radial projections; Hausdorff dimension; ORTHOGONAL PROJECTIONS; HAUSDORFF DIMENSION; SMOOTHNESS;
D O I
10.1007/s00039-024-00696-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the dimension version of Falconer's distance set conjecture for sets of equal Hausdorff and packing dimension (in particular, for Ahlfors-regular sets) in all ambient dimensions. In dimensions d=2 or 3, we obtain the first explicit improvements over the classical 1/2 bound for the dimensions of distance sets of general Borel sets of dimension d/2. For example, we show that the set of distances spanned by a planar Borel set of Hausdorff dimension 1 has Hausdorff dimension at least . In higher dimensions we obtain explicit estimates for the lower Minkowski dimension of the distance sets of sets of dimension d/2. These results rely on new estimates for the dimensions of radial projections that may have independent interest.
引用
收藏
页码:283 / 358
页数:76
相关论文
共 50 条
[31]   On the Hausdorff Dimension of Circular Furstenberg Sets [J].
Fassler, Katrin ;
Liu, Jiayin ;
Orponen, Tuomas .
DISCRETE ANALYSIS, 2024,
[32]   ON THE HAUSDORFF DIMENSION OF THE SIERPINSKI JULIA SETS [J].
Baranski, Krzysztof ;
Wardal, Michal .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) :3293-3313
[33]   DIMENSION OF POLAR SETS FOR BROWNIAN SHEET [J].
陈振龙 .
Acta Mathematica Scientia, 2003, (04) :549-560
[34]   Hausdorff Dimension of Symmetric Perfect Sets [J].
Judit Kardos .
Acta Mathematica Hungarica, 1999, 84 :257-266
[35]   Hausdorff dimension of symmetric perfect sets [J].
Kardos, J .
ACTA MATHEMATICA HUNGARICA, 1999, 84 (04) :257-266
[36]   ARITHMETIC PROGRESSIONS IN SETS OF FRACTIONAL DIMENSION [J].
Laba, Izabella ;
Pramanik, Malabika .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (02) :429-456
[37]   On the dimension of divergence sets of dispersive equations [J].
Juan Antonio Barceló ;
Jonathan Bennett ;
Anthony Carbery ;
Keith M. Rogers .
Mathematische Annalen, 2011, 349 :599-622
[38]   Hausdorff dimension of homogeneous perfect sets [J].
Jun Wu .
Acta Mathematica Hungarica, 2005, 107 :35-44
[39]   The Hausdorff dimension of a class of recurrent sets [J].
Shi, LM ;
Zhou, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :190-198
[40]   Dimension of divergence sets for dispersive equation [J].
Senhua Lan ;
Tie Li ;
Yaoming Niu .
Frontiers of Mathematics in China, 2020, 15 :317-331