On the Distance Sets Spanned by Sets of Dimension d/2 in Rd

被引:0
作者
Shmerkin, Pablo [1 ]
Wang, Hong [2 ,3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] UCLA, Dept Math, Los Angeles, CA USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Distance sets; Radial projections; Hausdorff dimension; ORTHOGONAL PROJECTIONS; HAUSDORFF DIMENSION; SMOOTHNESS;
D O I
10.1007/s00039-024-00696-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the dimension version of Falconer's distance set conjecture for sets of equal Hausdorff and packing dimension (in particular, for Ahlfors-regular sets) in all ambient dimensions. In dimensions d=2 or 3, we obtain the first explicit improvements over the classical 1/2 bound for the dimensions of distance sets of general Borel sets of dimension d/2. For example, we show that the set of distances spanned by a planar Borel set of Hausdorff dimension 1 has Hausdorff dimension at least . In higher dimensions we obtain explicit estimates for the lower Minkowski dimension of the distance sets of sets of dimension d/2. These results rely on new estimates for the dimensions of radial projections that may have independent interest.
引用
收藏
页码:283 / 358
页数:76
相关论文
共 50 条
  • [21] Distance sets of well-distributed planar sets for polygonal norms
    Konyagin, Sergei
    Laba, Izabella
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 152 (1) : 157 - 179
  • [22] Distance sets of well-distributed planar sets for polygonal norms
    Sergei Konyagin
    Izabella Łaba
    Israel Journal of Mathematics, 2006, 152 : 157 - 179
  • [23] Hausdorff dimension of sums of sets with themselves
    Korner, T. W.
    STUDIA MATHEMATICA, 2008, 188 (03) : 287 - 295
  • [24] Dimension of divergence sets for dispersive equation
    Lan, Senhua
    Li, Tie
    Niu, Yaoming
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (02) : 317 - 331
  • [25] DIMENSION OF IMAGES OF LARGE LEVEL SETS
    Armstrong, Gavin
    O'Farrell, Anthony G.
    MATHEMATICA SCANDINAVICA, 2022, 128 (01) : 147 - 160
  • [26] Dimension product structure of hyperbolic sets
    Hasselblatt, B
    Schmeling, J
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 : 88 - 96
  • [27] ON THE HAUSDORFF DIMENSION OF THE SIERPINSKI JULIA SETS
    Baranski, Krzysztof
    Wardal, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3293 - 3313
  • [28] On the Hausdorff Dimension of Circular Furstenberg Sets
    Fassler, Katrin
    Liu, Jiayin
    Orponen, Tuomas
    DISCRETE ANALYSIS, 2024,
  • [29] The Topological Dimension of Radial Julia Sets
    Lipham, David S.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (02) : 367 - 377
  • [30] Heisenberg Hausdorff Dimension of Besicovitch Sets
    Venieri, Laura
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 319 - 327