Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review

被引:2
作者
Gallo, Matthew C. [1 ]
Elias, Aura [1 ]
Reynolds, Julius [1 ]
Ball, Jacob R. [1 ]
Lieberman, Jay R. [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Orthopaed Surg, Keck Sch Med, Los Angeles, CA 90033 USA
[2] Univ Southern Calif, Viterbi Sch Engn, Alfred E Mann Dept Biomed Engn, Los Angeles, CA 90089 USA
来源
BIOENGINEERING-BASEL | 2025年 / 12卷 / 02期
关键词
gene therapy; tissue engineering; bone defect; bone graft; bone regeneration; BMP-2; osteoinductive; mesenchymal stem cells;
D O I
10.3390/bioengineering12020120
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
引用
收藏
页数:35
相关论文
共 267 条
[81]   Circulating osteoblast-lineage cells in humans [J].
Eghbali-Fatourechi, GZ ;
Lamsam, J ;
Fraser, D ;
Nagel, D ;
Riggs, BL ;
Khosla, S .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (19) :1959-1966
[82]   Chemically modified RNA activated matrices enhance bone regeneration [J].
Elangovan, Satheesh ;
Khorsand, Behnoush ;
Do, Anh-Vu ;
Hong, Liu ;
Dewerth, Alexander ;
Kormann, Michael ;
Ross, Ryan D. ;
Sumner, D. Rick ;
Allamargot, Chantal ;
Salem, Aliasger K. .
JOURNAL OF CONTROLLED RELEASE, 2015, 218 :22-28
[83]   The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor [J].
Elangovan, Satheesh ;
D'Mello, Sheetal R. ;
Hong, Liu ;
Ross, Ryan D. ;
Allamargot, Chantal ;
Dawson, Deborah V. ;
Stanford, Clark M. ;
Johnson, Georgia K. ;
Sumner, D. Rick ;
Salem, Aliasger K. .
BIOMATERIALS, 2014, 35 (02) :737-747
[84]   USE OF GENETICALLY MODIFIED MUSCLE AND FAT GRAFTS TO REPAIR DEFECTS IN BONE AND CARTILAGE [J].
Evans, C. H. ;
Liu, F. -J. ;
Glatt, V. ;
Hoyland, J. A. ;
Kirker-Head, C. ;
Walsh, A. ;
Betz, O. ;
Wells, J. W. ;
Betz, V. ;
Porter, R. M. ;
Saad, F. A. ;
Gerstenfeld, L. C. ;
Einhorn, T. A. ;
Harris, M. B. ;
Vrahas, M. S. .
EUROPEAN CELLS & MATERIALS, 2009, 18 :96-111
[85]   Free Vascularized Fibular Graft Reconstruction of Large Skeletal Defects after Tumor Resection [J].
Eward, William C. ;
Kontogeorgakos, Vasileios ;
Levin, Lawrence Scott ;
Brigman, Brian E. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2010, 468 (02) :590-598
[86]   Stimulation of new bone formation by direct transfer of osteogenic plasmid genes [J].
Fang, JM ;
Zhu, YY ;
Smiley, E ;
Bonadio, J ;
Rouleau, JP ;
Goldstein, SA ;
McCauley, LK ;
Davidson, BL ;
Roessler, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5753-5758
[87]   In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models [J].
Feeley, Brian T. ;
Conduah, Augustine H. ;
Sugiyama, Osamu ;
Krenek, Lucie ;
Chen, Irvin S. Y. ;
Lieberman, Jay R. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2006, 24 (08) :1709-1721
[88]   Sonoporation Increases Therapeutic Efficacy of Inducible and Constitutive BMP2/7 In Vivo Gene Delivery [J].
Feichtinger, Georg A. ;
Hofmann, Anna T. ;
Slezak, Paul ;
Schuetzenberger, Sebastian ;
Kaipel, Martin ;
Schwartz, Ernst ;
Neef, Anne ;
Nomikou, Nikolitsa ;
Nau, Thomas ;
van Griensven, Martijn ;
McHale, Anthony P. ;
Redl, Heinz .
HUMAN GENE THERAPY METHODS, 2014, 25 (01) :57-71
[89]  
Fillingham Y, 2016, BONE JOINT J, V98B, P6, DOI [10.1302/0301-620X.98B1.36350, 10.1302/0301-620X.98B.36350]
[90]   Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients [J].
Flierl, Michael A. ;
Smith, Wade R. ;
Mauffrey, Cyril ;
Irgit, Kaan ;
Williams, Allison E. ;
Ross, Erin ;
Peacher, Gabrielle ;
Hak, David J. ;
Stahel, Philip F. .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2013, 8